| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 2z | ⊢ 2  ∈  ℤ | 
						
							| 2 |  | 9nn | ⊢ 9  ∈  ℕ | 
						
							| 3 | 2 | nnzi | ⊢ 9  ∈  ℤ | 
						
							| 4 |  | 2re | ⊢ 2  ∈  ℝ | 
						
							| 5 |  | 9re | ⊢ 9  ∈  ℝ | 
						
							| 6 |  | 2lt9 | ⊢ 2  <  9 | 
						
							| 7 | 4 5 6 | ltleii | ⊢ 2  ≤  9 | 
						
							| 8 |  | eluz2 | ⊢ ( 9  ∈  ( ℤ≥ ‘ 2 )  ↔  ( 2  ∈  ℤ  ∧  9  ∈  ℤ  ∧  2  ≤  9 ) ) | 
						
							| 9 | 1 3 7 8 | mpbir3an | ⊢ 9  ∈  ( ℤ≥ ‘ 2 ) | 
						
							| 10 |  | fzouzsplit | ⊢ ( 9  ∈  ( ℤ≥ ‘ 2 )  →  ( ℤ≥ ‘ 2 )  =  ( ( 2 ..^ 9 )  ∪  ( ℤ≥ ‘ 9 ) ) ) | 
						
							| 11 | 10 | eleq2d | ⊢ ( 9  ∈  ( ℤ≥ ‘ 2 )  →  ( 𝑛  ∈  ( ℤ≥ ‘ 2 )  ↔  𝑛  ∈  ( ( 2 ..^ 9 )  ∪  ( ℤ≥ ‘ 9 ) ) ) ) | 
						
							| 12 | 9 11 | ax-mp | ⊢ ( 𝑛  ∈  ( ℤ≥ ‘ 2 )  ↔  𝑛  ∈  ( ( 2 ..^ 9 )  ∪  ( ℤ≥ ‘ 9 ) ) ) | 
						
							| 13 |  | elun | ⊢ ( 𝑛  ∈  ( ( 2 ..^ 9 )  ∪  ( ℤ≥ ‘ 9 ) )  ↔  ( 𝑛  ∈  ( 2 ..^ 9 )  ∨  𝑛  ∈  ( ℤ≥ ‘ 9 ) ) ) | 
						
							| 14 | 12 13 | bitri | ⊢ ( 𝑛  ∈  ( ℤ≥ ‘ 2 )  ↔  ( 𝑛  ∈  ( 2 ..^ 9 )  ∨  𝑛  ∈  ( ℤ≥ ‘ 9 ) ) ) | 
						
							| 15 |  | elfzo2 | ⊢ ( 𝑛  ∈  ( 2 ..^ 9 )  ↔  ( 𝑛  ∈  ( ℤ≥ ‘ 2 )  ∧  9  ∈  ℤ  ∧  𝑛  <  9 ) ) | 
						
							| 16 |  | simp1 | ⊢ ( ( 𝑛  ∈  ( ℤ≥ ‘ 2 )  ∧  9  ∈  ℤ  ∧  𝑛  <  9 )  →  𝑛  ∈  ( ℤ≥ ‘ 2 ) ) | 
						
							| 17 |  | df-9 | ⊢ 9  =  ( 8  +  1 ) | 
						
							| 18 | 17 | breq2i | ⊢ ( 𝑛  <  9  ↔  𝑛  <  ( 8  +  1 ) ) | 
						
							| 19 |  | eluz2nn | ⊢ ( 𝑛  ∈  ( ℤ≥ ‘ 2 )  →  𝑛  ∈  ℕ ) | 
						
							| 20 |  | 8nn | ⊢ 8  ∈  ℕ | 
						
							| 21 | 19 20 | jctir | ⊢ ( 𝑛  ∈  ( ℤ≥ ‘ 2 )  →  ( 𝑛  ∈  ℕ  ∧  8  ∈  ℕ ) ) | 
						
							| 22 | 21 | adantr | ⊢ ( ( 𝑛  ∈  ( ℤ≥ ‘ 2 )  ∧  9  ∈  ℤ )  →  ( 𝑛  ∈  ℕ  ∧  8  ∈  ℕ ) ) | 
						
							| 23 |  | nnleltp1 | ⊢ ( ( 𝑛  ∈  ℕ  ∧  8  ∈  ℕ )  →  ( 𝑛  ≤  8  ↔  𝑛  <  ( 8  +  1 ) ) ) | 
						
							| 24 | 22 23 | syl | ⊢ ( ( 𝑛  ∈  ( ℤ≥ ‘ 2 )  ∧  9  ∈  ℤ )  →  ( 𝑛  ≤  8  ↔  𝑛  <  ( 8  +  1 ) ) ) | 
						
							| 25 | 24 | biimprd | ⊢ ( ( 𝑛  ∈  ( ℤ≥ ‘ 2 )  ∧  9  ∈  ℤ )  →  ( 𝑛  <  ( 8  +  1 )  →  𝑛  ≤  8 ) ) | 
						
							| 26 | 18 25 | biimtrid | ⊢ ( ( 𝑛  ∈  ( ℤ≥ ‘ 2 )  ∧  9  ∈  ℤ )  →  ( 𝑛  <  9  →  𝑛  ≤  8 ) ) | 
						
							| 27 | 26 | 3impia | ⊢ ( ( 𝑛  ∈  ( ℤ≥ ‘ 2 )  ∧  9  ∈  ℤ  ∧  𝑛  <  9 )  →  𝑛  ≤  8 ) | 
						
							| 28 | 16 27 | jca | ⊢ ( ( 𝑛  ∈  ( ℤ≥ ‘ 2 )  ∧  9  ∈  ℤ  ∧  𝑛  <  9 )  →  ( 𝑛  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑛  ≤  8 ) ) | 
						
							| 29 | 15 28 | sylbi | ⊢ ( 𝑛  ∈  ( 2 ..^ 9 )  →  ( 𝑛  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑛  ≤  8 ) ) | 
						
							| 30 |  | nnsum3primesle9 | ⊢ ( ( 𝑛  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑛  ≤  8 )  →  ∃ 𝑑  ∈  ℕ ∃ 𝑓  ∈  ( ℙ  ↑m  ( 1 ... 𝑑 ) ) ( 𝑑  ≤  3  ∧  𝑛  =  Σ 𝑘  ∈  ( 1 ... 𝑑 ) ( 𝑓 ‘ 𝑘 ) ) ) | 
						
							| 31 | 29 30 | syl | ⊢ ( 𝑛  ∈  ( 2 ..^ 9 )  →  ∃ 𝑑  ∈  ℕ ∃ 𝑓  ∈  ( ℙ  ↑m  ( 1 ... 𝑑 ) ) ( 𝑑  ≤  3  ∧  𝑛  =  Σ 𝑘  ∈  ( 1 ... 𝑑 ) ( 𝑓 ‘ 𝑘 ) ) ) | 
						
							| 32 | 31 | a1d | ⊢ ( 𝑛  ∈  ( 2 ..^ 9 )  →  ( ∀ 𝑚  ∈   Even  ( 4  <  𝑚  →  𝑚  ∈   GoldbachEven  )  →  ∃ 𝑑  ∈  ℕ ∃ 𝑓  ∈  ( ℙ  ↑m  ( 1 ... 𝑑 ) ) ( 𝑑  ≤  3  ∧  𝑛  =  Σ 𝑘  ∈  ( 1 ... 𝑑 ) ( 𝑓 ‘ 𝑘 ) ) ) ) | 
						
							| 33 |  | breq2 | ⊢ ( 𝑚  =  𝑛  →  ( 4  <  𝑚  ↔  4  <  𝑛 ) ) | 
						
							| 34 |  | eleq1w | ⊢ ( 𝑚  =  𝑛  →  ( 𝑚  ∈   GoldbachEven   ↔  𝑛  ∈   GoldbachEven  ) ) | 
						
							| 35 | 33 34 | imbi12d | ⊢ ( 𝑚  =  𝑛  →  ( ( 4  <  𝑚  →  𝑚  ∈   GoldbachEven  )  ↔  ( 4  <  𝑛  →  𝑛  ∈   GoldbachEven  ) ) ) | 
						
							| 36 | 35 | rspcv | ⊢ ( 𝑛  ∈   Even   →  ( ∀ 𝑚  ∈   Even  ( 4  <  𝑚  →  𝑚  ∈   GoldbachEven  )  →  ( 4  <  𝑛  →  𝑛  ∈   GoldbachEven  ) ) ) | 
						
							| 37 |  | 4re | ⊢ 4  ∈  ℝ | 
						
							| 38 | 37 | a1i | ⊢ ( 𝑛  ∈  ( ℤ≥ ‘ 9 )  →  4  ∈  ℝ ) | 
						
							| 39 | 5 | a1i | ⊢ ( 𝑛  ∈  ( ℤ≥ ‘ 9 )  →  9  ∈  ℝ ) | 
						
							| 40 |  | eluzelre | ⊢ ( 𝑛  ∈  ( ℤ≥ ‘ 9 )  →  𝑛  ∈  ℝ ) | 
						
							| 41 | 38 39 40 | 3jca | ⊢ ( 𝑛  ∈  ( ℤ≥ ‘ 9 )  →  ( 4  ∈  ℝ  ∧  9  ∈  ℝ  ∧  𝑛  ∈  ℝ ) ) | 
						
							| 42 | 41 | adantl | ⊢ ( ( 𝑛  ∈   Even   ∧  𝑛  ∈  ( ℤ≥ ‘ 9 ) )  →  ( 4  ∈  ℝ  ∧  9  ∈  ℝ  ∧  𝑛  ∈  ℝ ) ) | 
						
							| 43 |  | eluzle | ⊢ ( 𝑛  ∈  ( ℤ≥ ‘ 9 )  →  9  ≤  𝑛 ) | 
						
							| 44 | 43 | adantl | ⊢ ( ( 𝑛  ∈   Even   ∧  𝑛  ∈  ( ℤ≥ ‘ 9 ) )  →  9  ≤  𝑛 ) | 
						
							| 45 |  | 4lt9 | ⊢ 4  <  9 | 
						
							| 46 | 44 45 | jctil | ⊢ ( ( 𝑛  ∈   Even   ∧  𝑛  ∈  ( ℤ≥ ‘ 9 ) )  →  ( 4  <  9  ∧  9  ≤  𝑛 ) ) | 
						
							| 47 |  | ltletr | ⊢ ( ( 4  ∈  ℝ  ∧  9  ∈  ℝ  ∧  𝑛  ∈  ℝ )  →  ( ( 4  <  9  ∧  9  ≤  𝑛 )  →  4  <  𝑛 ) ) | 
						
							| 48 | 42 46 47 | sylc | ⊢ ( ( 𝑛  ∈   Even   ∧  𝑛  ∈  ( ℤ≥ ‘ 9 ) )  →  4  <  𝑛 ) | 
						
							| 49 |  | pm2.27 | ⊢ ( 4  <  𝑛  →  ( ( 4  <  𝑛  →  𝑛  ∈   GoldbachEven  )  →  𝑛  ∈   GoldbachEven  ) ) | 
						
							| 50 | 48 49 | syl | ⊢ ( ( 𝑛  ∈   Even   ∧  𝑛  ∈  ( ℤ≥ ‘ 9 ) )  →  ( ( 4  <  𝑛  →  𝑛  ∈   GoldbachEven  )  →  𝑛  ∈   GoldbachEven  ) ) | 
						
							| 51 | 50 | ex | ⊢ ( 𝑛  ∈   Even   →  ( 𝑛  ∈  ( ℤ≥ ‘ 9 )  →  ( ( 4  <  𝑛  →  𝑛  ∈   GoldbachEven  )  →  𝑛  ∈   GoldbachEven  ) ) ) | 
						
							| 52 | 36 51 | syl5d | ⊢ ( 𝑛  ∈   Even   →  ( 𝑛  ∈  ( ℤ≥ ‘ 9 )  →  ( ∀ 𝑚  ∈   Even  ( 4  <  𝑚  →  𝑚  ∈   GoldbachEven  )  →  𝑛  ∈   GoldbachEven  ) ) ) | 
						
							| 53 | 52 | impcom | ⊢ ( ( 𝑛  ∈  ( ℤ≥ ‘ 9 )  ∧  𝑛  ∈   Even  )  →  ( ∀ 𝑚  ∈   Even  ( 4  <  𝑚  →  𝑚  ∈   GoldbachEven  )  →  𝑛  ∈   GoldbachEven  ) ) | 
						
							| 54 |  | nnsum3primesgbe | ⊢ ( 𝑛  ∈   GoldbachEven   →  ∃ 𝑑  ∈  ℕ ∃ 𝑓  ∈  ( ℙ  ↑m  ( 1 ... 𝑑 ) ) ( 𝑑  ≤  3  ∧  𝑛  =  Σ 𝑘  ∈  ( 1 ... 𝑑 ) ( 𝑓 ‘ 𝑘 ) ) ) | 
						
							| 55 | 53 54 | syl6 | ⊢ ( ( 𝑛  ∈  ( ℤ≥ ‘ 9 )  ∧  𝑛  ∈   Even  )  →  ( ∀ 𝑚  ∈   Even  ( 4  <  𝑚  →  𝑚  ∈   GoldbachEven  )  →  ∃ 𝑑  ∈  ℕ ∃ 𝑓  ∈  ( ℙ  ↑m  ( 1 ... 𝑑 ) ) ( 𝑑  ≤  3  ∧  𝑛  =  Σ 𝑘  ∈  ( 1 ... 𝑑 ) ( 𝑓 ‘ 𝑘 ) ) ) ) | 
						
							| 56 |  | 3nn | ⊢ 3  ∈  ℕ | 
						
							| 57 | 56 | a1i | ⊢ ( ( ( 𝑛  ∈  ( ℤ≥ ‘ 9 )  ∧  𝑛  ∈   Odd  )  ∧  ∀ 𝑜  ∈   Odd  ( 5  <  𝑜  →  𝑜  ∈   GoldbachOddW  ) )  →  3  ∈  ℕ ) | 
						
							| 58 |  | oveq2 | ⊢ ( 𝑑  =  3  →  ( 1 ... 𝑑 )  =  ( 1 ... 3 ) ) | 
						
							| 59 | 58 | oveq2d | ⊢ ( 𝑑  =  3  →  ( ℙ  ↑m  ( 1 ... 𝑑 ) )  =  ( ℙ  ↑m  ( 1 ... 3 ) ) ) | 
						
							| 60 |  | breq1 | ⊢ ( 𝑑  =  3  →  ( 𝑑  ≤  3  ↔  3  ≤  3 ) ) | 
						
							| 61 | 58 | sumeq1d | ⊢ ( 𝑑  =  3  →  Σ 𝑘  ∈  ( 1 ... 𝑑 ) ( 𝑓 ‘ 𝑘 )  =  Σ 𝑘  ∈  ( 1 ... 3 ) ( 𝑓 ‘ 𝑘 ) ) | 
						
							| 62 | 61 | eqeq2d | ⊢ ( 𝑑  =  3  →  ( 𝑛  =  Σ 𝑘  ∈  ( 1 ... 𝑑 ) ( 𝑓 ‘ 𝑘 )  ↔  𝑛  =  Σ 𝑘  ∈  ( 1 ... 3 ) ( 𝑓 ‘ 𝑘 ) ) ) | 
						
							| 63 | 60 62 | anbi12d | ⊢ ( 𝑑  =  3  →  ( ( 𝑑  ≤  3  ∧  𝑛  =  Σ 𝑘  ∈  ( 1 ... 𝑑 ) ( 𝑓 ‘ 𝑘 ) )  ↔  ( 3  ≤  3  ∧  𝑛  =  Σ 𝑘  ∈  ( 1 ... 3 ) ( 𝑓 ‘ 𝑘 ) ) ) ) | 
						
							| 64 | 59 63 | rexeqbidv | ⊢ ( 𝑑  =  3  →  ( ∃ 𝑓  ∈  ( ℙ  ↑m  ( 1 ... 𝑑 ) ) ( 𝑑  ≤  3  ∧  𝑛  =  Σ 𝑘  ∈  ( 1 ... 𝑑 ) ( 𝑓 ‘ 𝑘 ) )  ↔  ∃ 𝑓  ∈  ( ℙ  ↑m  ( 1 ... 3 ) ) ( 3  ≤  3  ∧  𝑛  =  Σ 𝑘  ∈  ( 1 ... 3 ) ( 𝑓 ‘ 𝑘 ) ) ) ) | 
						
							| 65 | 64 | adantl | ⊢ ( ( ( ( 𝑛  ∈  ( ℤ≥ ‘ 9 )  ∧  𝑛  ∈   Odd  )  ∧  ∀ 𝑜  ∈   Odd  ( 5  <  𝑜  →  𝑜  ∈   GoldbachOddW  ) )  ∧  𝑑  =  3 )  →  ( ∃ 𝑓  ∈  ( ℙ  ↑m  ( 1 ... 𝑑 ) ) ( 𝑑  ≤  3  ∧  𝑛  =  Σ 𝑘  ∈  ( 1 ... 𝑑 ) ( 𝑓 ‘ 𝑘 ) )  ↔  ∃ 𝑓  ∈  ( ℙ  ↑m  ( 1 ... 3 ) ) ( 3  ≤  3  ∧  𝑛  =  Σ 𝑘  ∈  ( 1 ... 3 ) ( 𝑓 ‘ 𝑘 ) ) ) ) | 
						
							| 66 |  | 3re | ⊢ 3  ∈  ℝ | 
						
							| 67 | 66 | leidi | ⊢ 3  ≤  3 | 
						
							| 68 | 67 | a1i | ⊢ ( ( ( 𝑛  ∈  ( ℤ≥ ‘ 9 )  ∧  𝑛  ∈   Odd  )  ∧  ∀ 𝑜  ∈   Odd  ( 5  <  𝑜  →  𝑜  ∈   GoldbachOddW  ) )  →  3  ≤  3 ) | 
						
							| 69 |  | 6nn | ⊢ 6  ∈  ℕ | 
						
							| 70 | 69 | nnzi | ⊢ 6  ∈  ℤ | 
						
							| 71 |  | 6re | ⊢ 6  ∈  ℝ | 
						
							| 72 |  | 6lt9 | ⊢ 6  <  9 | 
						
							| 73 | 71 5 72 | ltleii | ⊢ 6  ≤  9 | 
						
							| 74 |  | eluzuzle | ⊢ ( ( 6  ∈  ℤ  ∧  6  ≤  9 )  →  ( 𝑛  ∈  ( ℤ≥ ‘ 9 )  →  𝑛  ∈  ( ℤ≥ ‘ 6 ) ) ) | 
						
							| 75 | 70 73 74 | mp2an | ⊢ ( 𝑛  ∈  ( ℤ≥ ‘ 9 )  →  𝑛  ∈  ( ℤ≥ ‘ 6 ) ) | 
						
							| 76 | 75 | anim1i | ⊢ ( ( 𝑛  ∈  ( ℤ≥ ‘ 9 )  ∧  𝑛  ∈   Odd  )  →  ( 𝑛  ∈  ( ℤ≥ ‘ 6 )  ∧  𝑛  ∈   Odd  ) ) | 
						
							| 77 |  | nnsum4primesodd | ⊢ ( ∀ 𝑜  ∈   Odd  ( 5  <  𝑜  →  𝑜  ∈   GoldbachOddW  )  →  ( ( 𝑛  ∈  ( ℤ≥ ‘ 6 )  ∧  𝑛  ∈   Odd  )  →  ∃ 𝑓  ∈  ( ℙ  ↑m  ( 1 ... 3 ) ) 𝑛  =  Σ 𝑘  ∈  ( 1 ... 3 ) ( 𝑓 ‘ 𝑘 ) ) ) | 
						
							| 78 | 76 77 | mpan9 | ⊢ ( ( ( 𝑛  ∈  ( ℤ≥ ‘ 9 )  ∧  𝑛  ∈   Odd  )  ∧  ∀ 𝑜  ∈   Odd  ( 5  <  𝑜  →  𝑜  ∈   GoldbachOddW  ) )  →  ∃ 𝑓  ∈  ( ℙ  ↑m  ( 1 ... 3 ) ) 𝑛  =  Σ 𝑘  ∈  ( 1 ... 3 ) ( 𝑓 ‘ 𝑘 ) ) | 
						
							| 79 |  | r19.42v | ⊢ ( ∃ 𝑓  ∈  ( ℙ  ↑m  ( 1 ... 3 ) ) ( 3  ≤  3  ∧  𝑛  =  Σ 𝑘  ∈  ( 1 ... 3 ) ( 𝑓 ‘ 𝑘 ) )  ↔  ( 3  ≤  3  ∧  ∃ 𝑓  ∈  ( ℙ  ↑m  ( 1 ... 3 ) ) 𝑛  =  Σ 𝑘  ∈  ( 1 ... 3 ) ( 𝑓 ‘ 𝑘 ) ) ) | 
						
							| 80 | 68 78 79 | sylanbrc | ⊢ ( ( ( 𝑛  ∈  ( ℤ≥ ‘ 9 )  ∧  𝑛  ∈   Odd  )  ∧  ∀ 𝑜  ∈   Odd  ( 5  <  𝑜  →  𝑜  ∈   GoldbachOddW  ) )  →  ∃ 𝑓  ∈  ( ℙ  ↑m  ( 1 ... 3 ) ) ( 3  ≤  3  ∧  𝑛  =  Σ 𝑘  ∈  ( 1 ... 3 ) ( 𝑓 ‘ 𝑘 ) ) ) | 
						
							| 81 | 57 65 80 | rspcedvd | ⊢ ( ( ( 𝑛  ∈  ( ℤ≥ ‘ 9 )  ∧  𝑛  ∈   Odd  )  ∧  ∀ 𝑜  ∈   Odd  ( 5  <  𝑜  →  𝑜  ∈   GoldbachOddW  ) )  →  ∃ 𝑑  ∈  ℕ ∃ 𝑓  ∈  ( ℙ  ↑m  ( 1 ... 𝑑 ) ) ( 𝑑  ≤  3  ∧  𝑛  =  Σ 𝑘  ∈  ( 1 ... 𝑑 ) ( 𝑓 ‘ 𝑘 ) ) ) | 
						
							| 82 | 81 | expcom | ⊢ ( ∀ 𝑜  ∈   Odd  ( 5  <  𝑜  →  𝑜  ∈   GoldbachOddW  )  →  ( ( 𝑛  ∈  ( ℤ≥ ‘ 9 )  ∧  𝑛  ∈   Odd  )  →  ∃ 𝑑  ∈  ℕ ∃ 𝑓  ∈  ( ℙ  ↑m  ( 1 ... 𝑑 ) ) ( 𝑑  ≤  3  ∧  𝑛  =  Σ 𝑘  ∈  ( 1 ... 𝑑 ) ( 𝑓 ‘ 𝑘 ) ) ) ) | 
						
							| 83 |  | sbgoldbwt | ⊢ ( ∀ 𝑚  ∈   Even  ( 4  <  𝑚  →  𝑚  ∈   GoldbachEven  )  →  ∀ 𝑜  ∈   Odd  ( 5  <  𝑜  →  𝑜  ∈   GoldbachOddW  ) ) | 
						
							| 84 | 82 83 | syl11 | ⊢ ( ( 𝑛  ∈  ( ℤ≥ ‘ 9 )  ∧  𝑛  ∈   Odd  )  →  ( ∀ 𝑚  ∈   Even  ( 4  <  𝑚  →  𝑚  ∈   GoldbachEven  )  →  ∃ 𝑑  ∈  ℕ ∃ 𝑓  ∈  ( ℙ  ↑m  ( 1 ... 𝑑 ) ) ( 𝑑  ≤  3  ∧  𝑛  =  Σ 𝑘  ∈  ( 1 ... 𝑑 ) ( 𝑓 ‘ 𝑘 ) ) ) ) | 
						
							| 85 |  | eluzelz | ⊢ ( 𝑛  ∈  ( ℤ≥ ‘ 9 )  →  𝑛  ∈  ℤ ) | 
						
							| 86 |  | zeoALTV | ⊢ ( 𝑛  ∈  ℤ  →  ( 𝑛  ∈   Even   ∨  𝑛  ∈   Odd  ) ) | 
						
							| 87 | 85 86 | syl | ⊢ ( 𝑛  ∈  ( ℤ≥ ‘ 9 )  →  ( 𝑛  ∈   Even   ∨  𝑛  ∈   Odd  ) ) | 
						
							| 88 | 55 84 87 | mpjaodan | ⊢ ( 𝑛  ∈  ( ℤ≥ ‘ 9 )  →  ( ∀ 𝑚  ∈   Even  ( 4  <  𝑚  →  𝑚  ∈   GoldbachEven  )  →  ∃ 𝑑  ∈  ℕ ∃ 𝑓  ∈  ( ℙ  ↑m  ( 1 ... 𝑑 ) ) ( 𝑑  ≤  3  ∧  𝑛  =  Σ 𝑘  ∈  ( 1 ... 𝑑 ) ( 𝑓 ‘ 𝑘 ) ) ) ) | 
						
							| 89 | 32 88 | jaoi | ⊢ ( ( 𝑛  ∈  ( 2 ..^ 9 )  ∨  𝑛  ∈  ( ℤ≥ ‘ 9 ) )  →  ( ∀ 𝑚  ∈   Even  ( 4  <  𝑚  →  𝑚  ∈   GoldbachEven  )  →  ∃ 𝑑  ∈  ℕ ∃ 𝑓  ∈  ( ℙ  ↑m  ( 1 ... 𝑑 ) ) ( 𝑑  ≤  3  ∧  𝑛  =  Σ 𝑘  ∈  ( 1 ... 𝑑 ) ( 𝑓 ‘ 𝑘 ) ) ) ) | 
						
							| 90 | 14 89 | sylbi | ⊢ ( 𝑛  ∈  ( ℤ≥ ‘ 2 )  →  ( ∀ 𝑚  ∈   Even  ( 4  <  𝑚  →  𝑚  ∈   GoldbachEven  )  →  ∃ 𝑑  ∈  ℕ ∃ 𝑓  ∈  ( ℙ  ↑m  ( 1 ... 𝑑 ) ) ( 𝑑  ≤  3  ∧  𝑛  =  Σ 𝑘  ∈  ( 1 ... 𝑑 ) ( 𝑓 ‘ 𝑘 ) ) ) ) | 
						
							| 91 | 90 | impcom | ⊢ ( ( ∀ 𝑚  ∈   Even  ( 4  <  𝑚  →  𝑚  ∈   GoldbachEven  )  ∧  𝑛  ∈  ( ℤ≥ ‘ 2 ) )  →  ∃ 𝑑  ∈  ℕ ∃ 𝑓  ∈  ( ℙ  ↑m  ( 1 ... 𝑑 ) ) ( 𝑑  ≤  3  ∧  𝑛  =  Σ 𝑘  ∈  ( 1 ... 𝑑 ) ( 𝑓 ‘ 𝑘 ) ) ) | 
						
							| 92 | 91 | ralrimiva | ⊢ ( ∀ 𝑚  ∈   Even  ( 4  <  𝑚  →  𝑚  ∈   GoldbachEven  )  →  ∀ 𝑛  ∈  ( ℤ≥ ‘ 2 ) ∃ 𝑑  ∈  ℕ ∃ 𝑓  ∈  ( ℙ  ↑m  ( 1 ... 𝑑 ) ) ( 𝑑  ≤  3  ∧  𝑛  =  Σ 𝑘  ∈  ( 1 ... 𝑑 ) ( 𝑓 ‘ 𝑘 ) ) ) |