| Step |
Hyp |
Ref |
Expression |
| 1 |
|
2z |
⊢ 2 ∈ ℤ |
| 2 |
|
9nn |
⊢ 9 ∈ ℕ |
| 3 |
2
|
nnzi |
⊢ 9 ∈ ℤ |
| 4 |
|
2re |
⊢ 2 ∈ ℝ |
| 5 |
|
9re |
⊢ 9 ∈ ℝ |
| 6 |
|
2lt9 |
⊢ 2 < 9 |
| 7 |
4 5 6
|
ltleii |
⊢ 2 ≤ 9 |
| 8 |
|
eluz2 |
⊢ ( 9 ∈ ( ℤ≥ ‘ 2 ) ↔ ( 2 ∈ ℤ ∧ 9 ∈ ℤ ∧ 2 ≤ 9 ) ) |
| 9 |
1 3 7 8
|
mpbir3an |
⊢ 9 ∈ ( ℤ≥ ‘ 2 ) |
| 10 |
|
fzouzsplit |
⊢ ( 9 ∈ ( ℤ≥ ‘ 2 ) → ( ℤ≥ ‘ 2 ) = ( ( 2 ..^ 9 ) ∪ ( ℤ≥ ‘ 9 ) ) ) |
| 11 |
10
|
eleq2d |
⊢ ( 9 ∈ ( ℤ≥ ‘ 2 ) → ( 𝑛 ∈ ( ℤ≥ ‘ 2 ) ↔ 𝑛 ∈ ( ( 2 ..^ 9 ) ∪ ( ℤ≥ ‘ 9 ) ) ) ) |
| 12 |
9 11
|
ax-mp |
⊢ ( 𝑛 ∈ ( ℤ≥ ‘ 2 ) ↔ 𝑛 ∈ ( ( 2 ..^ 9 ) ∪ ( ℤ≥ ‘ 9 ) ) ) |
| 13 |
|
elun |
⊢ ( 𝑛 ∈ ( ( 2 ..^ 9 ) ∪ ( ℤ≥ ‘ 9 ) ) ↔ ( 𝑛 ∈ ( 2 ..^ 9 ) ∨ 𝑛 ∈ ( ℤ≥ ‘ 9 ) ) ) |
| 14 |
12 13
|
bitri |
⊢ ( 𝑛 ∈ ( ℤ≥ ‘ 2 ) ↔ ( 𝑛 ∈ ( 2 ..^ 9 ) ∨ 𝑛 ∈ ( ℤ≥ ‘ 9 ) ) ) |
| 15 |
|
elfzo2 |
⊢ ( 𝑛 ∈ ( 2 ..^ 9 ) ↔ ( 𝑛 ∈ ( ℤ≥ ‘ 2 ) ∧ 9 ∈ ℤ ∧ 𝑛 < 9 ) ) |
| 16 |
|
simp1 |
⊢ ( ( 𝑛 ∈ ( ℤ≥ ‘ 2 ) ∧ 9 ∈ ℤ ∧ 𝑛 < 9 ) → 𝑛 ∈ ( ℤ≥ ‘ 2 ) ) |
| 17 |
|
df-9 |
⊢ 9 = ( 8 + 1 ) |
| 18 |
17
|
breq2i |
⊢ ( 𝑛 < 9 ↔ 𝑛 < ( 8 + 1 ) ) |
| 19 |
|
eluz2nn |
⊢ ( 𝑛 ∈ ( ℤ≥ ‘ 2 ) → 𝑛 ∈ ℕ ) |
| 20 |
|
8nn |
⊢ 8 ∈ ℕ |
| 21 |
19 20
|
jctir |
⊢ ( 𝑛 ∈ ( ℤ≥ ‘ 2 ) → ( 𝑛 ∈ ℕ ∧ 8 ∈ ℕ ) ) |
| 22 |
21
|
adantr |
⊢ ( ( 𝑛 ∈ ( ℤ≥ ‘ 2 ) ∧ 9 ∈ ℤ ) → ( 𝑛 ∈ ℕ ∧ 8 ∈ ℕ ) ) |
| 23 |
|
nnleltp1 |
⊢ ( ( 𝑛 ∈ ℕ ∧ 8 ∈ ℕ ) → ( 𝑛 ≤ 8 ↔ 𝑛 < ( 8 + 1 ) ) ) |
| 24 |
22 23
|
syl |
⊢ ( ( 𝑛 ∈ ( ℤ≥ ‘ 2 ) ∧ 9 ∈ ℤ ) → ( 𝑛 ≤ 8 ↔ 𝑛 < ( 8 + 1 ) ) ) |
| 25 |
24
|
biimprd |
⊢ ( ( 𝑛 ∈ ( ℤ≥ ‘ 2 ) ∧ 9 ∈ ℤ ) → ( 𝑛 < ( 8 + 1 ) → 𝑛 ≤ 8 ) ) |
| 26 |
18 25
|
biimtrid |
⊢ ( ( 𝑛 ∈ ( ℤ≥ ‘ 2 ) ∧ 9 ∈ ℤ ) → ( 𝑛 < 9 → 𝑛 ≤ 8 ) ) |
| 27 |
26
|
3impia |
⊢ ( ( 𝑛 ∈ ( ℤ≥ ‘ 2 ) ∧ 9 ∈ ℤ ∧ 𝑛 < 9 ) → 𝑛 ≤ 8 ) |
| 28 |
16 27
|
jca |
⊢ ( ( 𝑛 ∈ ( ℤ≥ ‘ 2 ) ∧ 9 ∈ ℤ ∧ 𝑛 < 9 ) → ( 𝑛 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑛 ≤ 8 ) ) |
| 29 |
15 28
|
sylbi |
⊢ ( 𝑛 ∈ ( 2 ..^ 9 ) → ( 𝑛 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑛 ≤ 8 ) ) |
| 30 |
|
nnsum3primesle9 |
⊢ ( ( 𝑛 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑛 ≤ 8 ) → ∃ 𝑑 ∈ ℕ ∃ 𝑓 ∈ ( ℙ ↑m ( 1 ... 𝑑 ) ) ( 𝑑 ≤ 3 ∧ 𝑛 = Σ 𝑘 ∈ ( 1 ... 𝑑 ) ( 𝑓 ‘ 𝑘 ) ) ) |
| 31 |
29 30
|
syl |
⊢ ( 𝑛 ∈ ( 2 ..^ 9 ) → ∃ 𝑑 ∈ ℕ ∃ 𝑓 ∈ ( ℙ ↑m ( 1 ... 𝑑 ) ) ( 𝑑 ≤ 3 ∧ 𝑛 = Σ 𝑘 ∈ ( 1 ... 𝑑 ) ( 𝑓 ‘ 𝑘 ) ) ) |
| 32 |
31
|
a1d |
⊢ ( 𝑛 ∈ ( 2 ..^ 9 ) → ( ∀ 𝑚 ∈ Even ( 4 < 𝑚 → 𝑚 ∈ GoldbachEven ) → ∃ 𝑑 ∈ ℕ ∃ 𝑓 ∈ ( ℙ ↑m ( 1 ... 𝑑 ) ) ( 𝑑 ≤ 3 ∧ 𝑛 = Σ 𝑘 ∈ ( 1 ... 𝑑 ) ( 𝑓 ‘ 𝑘 ) ) ) ) |
| 33 |
|
breq2 |
⊢ ( 𝑚 = 𝑛 → ( 4 < 𝑚 ↔ 4 < 𝑛 ) ) |
| 34 |
|
eleq1w |
⊢ ( 𝑚 = 𝑛 → ( 𝑚 ∈ GoldbachEven ↔ 𝑛 ∈ GoldbachEven ) ) |
| 35 |
33 34
|
imbi12d |
⊢ ( 𝑚 = 𝑛 → ( ( 4 < 𝑚 → 𝑚 ∈ GoldbachEven ) ↔ ( 4 < 𝑛 → 𝑛 ∈ GoldbachEven ) ) ) |
| 36 |
35
|
rspcv |
⊢ ( 𝑛 ∈ Even → ( ∀ 𝑚 ∈ Even ( 4 < 𝑚 → 𝑚 ∈ GoldbachEven ) → ( 4 < 𝑛 → 𝑛 ∈ GoldbachEven ) ) ) |
| 37 |
|
4re |
⊢ 4 ∈ ℝ |
| 38 |
37
|
a1i |
⊢ ( 𝑛 ∈ ( ℤ≥ ‘ 9 ) → 4 ∈ ℝ ) |
| 39 |
5
|
a1i |
⊢ ( 𝑛 ∈ ( ℤ≥ ‘ 9 ) → 9 ∈ ℝ ) |
| 40 |
|
eluzelre |
⊢ ( 𝑛 ∈ ( ℤ≥ ‘ 9 ) → 𝑛 ∈ ℝ ) |
| 41 |
38 39 40
|
3jca |
⊢ ( 𝑛 ∈ ( ℤ≥ ‘ 9 ) → ( 4 ∈ ℝ ∧ 9 ∈ ℝ ∧ 𝑛 ∈ ℝ ) ) |
| 42 |
41
|
adantl |
⊢ ( ( 𝑛 ∈ Even ∧ 𝑛 ∈ ( ℤ≥ ‘ 9 ) ) → ( 4 ∈ ℝ ∧ 9 ∈ ℝ ∧ 𝑛 ∈ ℝ ) ) |
| 43 |
|
eluzle |
⊢ ( 𝑛 ∈ ( ℤ≥ ‘ 9 ) → 9 ≤ 𝑛 ) |
| 44 |
43
|
adantl |
⊢ ( ( 𝑛 ∈ Even ∧ 𝑛 ∈ ( ℤ≥ ‘ 9 ) ) → 9 ≤ 𝑛 ) |
| 45 |
|
4lt9 |
⊢ 4 < 9 |
| 46 |
44 45
|
jctil |
⊢ ( ( 𝑛 ∈ Even ∧ 𝑛 ∈ ( ℤ≥ ‘ 9 ) ) → ( 4 < 9 ∧ 9 ≤ 𝑛 ) ) |
| 47 |
|
ltletr |
⊢ ( ( 4 ∈ ℝ ∧ 9 ∈ ℝ ∧ 𝑛 ∈ ℝ ) → ( ( 4 < 9 ∧ 9 ≤ 𝑛 ) → 4 < 𝑛 ) ) |
| 48 |
42 46 47
|
sylc |
⊢ ( ( 𝑛 ∈ Even ∧ 𝑛 ∈ ( ℤ≥ ‘ 9 ) ) → 4 < 𝑛 ) |
| 49 |
|
pm2.27 |
⊢ ( 4 < 𝑛 → ( ( 4 < 𝑛 → 𝑛 ∈ GoldbachEven ) → 𝑛 ∈ GoldbachEven ) ) |
| 50 |
48 49
|
syl |
⊢ ( ( 𝑛 ∈ Even ∧ 𝑛 ∈ ( ℤ≥ ‘ 9 ) ) → ( ( 4 < 𝑛 → 𝑛 ∈ GoldbachEven ) → 𝑛 ∈ GoldbachEven ) ) |
| 51 |
50
|
ex |
⊢ ( 𝑛 ∈ Even → ( 𝑛 ∈ ( ℤ≥ ‘ 9 ) → ( ( 4 < 𝑛 → 𝑛 ∈ GoldbachEven ) → 𝑛 ∈ GoldbachEven ) ) ) |
| 52 |
36 51
|
syl5d |
⊢ ( 𝑛 ∈ Even → ( 𝑛 ∈ ( ℤ≥ ‘ 9 ) → ( ∀ 𝑚 ∈ Even ( 4 < 𝑚 → 𝑚 ∈ GoldbachEven ) → 𝑛 ∈ GoldbachEven ) ) ) |
| 53 |
52
|
impcom |
⊢ ( ( 𝑛 ∈ ( ℤ≥ ‘ 9 ) ∧ 𝑛 ∈ Even ) → ( ∀ 𝑚 ∈ Even ( 4 < 𝑚 → 𝑚 ∈ GoldbachEven ) → 𝑛 ∈ GoldbachEven ) ) |
| 54 |
|
nnsum3primesgbe |
⊢ ( 𝑛 ∈ GoldbachEven → ∃ 𝑑 ∈ ℕ ∃ 𝑓 ∈ ( ℙ ↑m ( 1 ... 𝑑 ) ) ( 𝑑 ≤ 3 ∧ 𝑛 = Σ 𝑘 ∈ ( 1 ... 𝑑 ) ( 𝑓 ‘ 𝑘 ) ) ) |
| 55 |
53 54
|
syl6 |
⊢ ( ( 𝑛 ∈ ( ℤ≥ ‘ 9 ) ∧ 𝑛 ∈ Even ) → ( ∀ 𝑚 ∈ Even ( 4 < 𝑚 → 𝑚 ∈ GoldbachEven ) → ∃ 𝑑 ∈ ℕ ∃ 𝑓 ∈ ( ℙ ↑m ( 1 ... 𝑑 ) ) ( 𝑑 ≤ 3 ∧ 𝑛 = Σ 𝑘 ∈ ( 1 ... 𝑑 ) ( 𝑓 ‘ 𝑘 ) ) ) ) |
| 56 |
|
3nn |
⊢ 3 ∈ ℕ |
| 57 |
56
|
a1i |
⊢ ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 9 ) ∧ 𝑛 ∈ Odd ) ∧ ∀ 𝑜 ∈ Odd ( 5 < 𝑜 → 𝑜 ∈ GoldbachOddW ) ) → 3 ∈ ℕ ) |
| 58 |
|
oveq2 |
⊢ ( 𝑑 = 3 → ( 1 ... 𝑑 ) = ( 1 ... 3 ) ) |
| 59 |
58
|
oveq2d |
⊢ ( 𝑑 = 3 → ( ℙ ↑m ( 1 ... 𝑑 ) ) = ( ℙ ↑m ( 1 ... 3 ) ) ) |
| 60 |
|
breq1 |
⊢ ( 𝑑 = 3 → ( 𝑑 ≤ 3 ↔ 3 ≤ 3 ) ) |
| 61 |
58
|
sumeq1d |
⊢ ( 𝑑 = 3 → Σ 𝑘 ∈ ( 1 ... 𝑑 ) ( 𝑓 ‘ 𝑘 ) = Σ 𝑘 ∈ ( 1 ... 3 ) ( 𝑓 ‘ 𝑘 ) ) |
| 62 |
61
|
eqeq2d |
⊢ ( 𝑑 = 3 → ( 𝑛 = Σ 𝑘 ∈ ( 1 ... 𝑑 ) ( 𝑓 ‘ 𝑘 ) ↔ 𝑛 = Σ 𝑘 ∈ ( 1 ... 3 ) ( 𝑓 ‘ 𝑘 ) ) ) |
| 63 |
60 62
|
anbi12d |
⊢ ( 𝑑 = 3 → ( ( 𝑑 ≤ 3 ∧ 𝑛 = Σ 𝑘 ∈ ( 1 ... 𝑑 ) ( 𝑓 ‘ 𝑘 ) ) ↔ ( 3 ≤ 3 ∧ 𝑛 = Σ 𝑘 ∈ ( 1 ... 3 ) ( 𝑓 ‘ 𝑘 ) ) ) ) |
| 64 |
59 63
|
rexeqbidv |
⊢ ( 𝑑 = 3 → ( ∃ 𝑓 ∈ ( ℙ ↑m ( 1 ... 𝑑 ) ) ( 𝑑 ≤ 3 ∧ 𝑛 = Σ 𝑘 ∈ ( 1 ... 𝑑 ) ( 𝑓 ‘ 𝑘 ) ) ↔ ∃ 𝑓 ∈ ( ℙ ↑m ( 1 ... 3 ) ) ( 3 ≤ 3 ∧ 𝑛 = Σ 𝑘 ∈ ( 1 ... 3 ) ( 𝑓 ‘ 𝑘 ) ) ) ) |
| 65 |
64
|
adantl |
⊢ ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 9 ) ∧ 𝑛 ∈ Odd ) ∧ ∀ 𝑜 ∈ Odd ( 5 < 𝑜 → 𝑜 ∈ GoldbachOddW ) ) ∧ 𝑑 = 3 ) → ( ∃ 𝑓 ∈ ( ℙ ↑m ( 1 ... 𝑑 ) ) ( 𝑑 ≤ 3 ∧ 𝑛 = Σ 𝑘 ∈ ( 1 ... 𝑑 ) ( 𝑓 ‘ 𝑘 ) ) ↔ ∃ 𝑓 ∈ ( ℙ ↑m ( 1 ... 3 ) ) ( 3 ≤ 3 ∧ 𝑛 = Σ 𝑘 ∈ ( 1 ... 3 ) ( 𝑓 ‘ 𝑘 ) ) ) ) |
| 66 |
|
3re |
⊢ 3 ∈ ℝ |
| 67 |
66
|
leidi |
⊢ 3 ≤ 3 |
| 68 |
67
|
a1i |
⊢ ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 9 ) ∧ 𝑛 ∈ Odd ) ∧ ∀ 𝑜 ∈ Odd ( 5 < 𝑜 → 𝑜 ∈ GoldbachOddW ) ) → 3 ≤ 3 ) |
| 69 |
|
6nn |
⊢ 6 ∈ ℕ |
| 70 |
69
|
nnzi |
⊢ 6 ∈ ℤ |
| 71 |
|
6re |
⊢ 6 ∈ ℝ |
| 72 |
|
6lt9 |
⊢ 6 < 9 |
| 73 |
71 5 72
|
ltleii |
⊢ 6 ≤ 9 |
| 74 |
|
eluzuzle |
⊢ ( ( 6 ∈ ℤ ∧ 6 ≤ 9 ) → ( 𝑛 ∈ ( ℤ≥ ‘ 9 ) → 𝑛 ∈ ( ℤ≥ ‘ 6 ) ) ) |
| 75 |
70 73 74
|
mp2an |
⊢ ( 𝑛 ∈ ( ℤ≥ ‘ 9 ) → 𝑛 ∈ ( ℤ≥ ‘ 6 ) ) |
| 76 |
75
|
anim1i |
⊢ ( ( 𝑛 ∈ ( ℤ≥ ‘ 9 ) ∧ 𝑛 ∈ Odd ) → ( 𝑛 ∈ ( ℤ≥ ‘ 6 ) ∧ 𝑛 ∈ Odd ) ) |
| 77 |
|
nnsum4primesodd |
⊢ ( ∀ 𝑜 ∈ Odd ( 5 < 𝑜 → 𝑜 ∈ GoldbachOddW ) → ( ( 𝑛 ∈ ( ℤ≥ ‘ 6 ) ∧ 𝑛 ∈ Odd ) → ∃ 𝑓 ∈ ( ℙ ↑m ( 1 ... 3 ) ) 𝑛 = Σ 𝑘 ∈ ( 1 ... 3 ) ( 𝑓 ‘ 𝑘 ) ) ) |
| 78 |
76 77
|
mpan9 |
⊢ ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 9 ) ∧ 𝑛 ∈ Odd ) ∧ ∀ 𝑜 ∈ Odd ( 5 < 𝑜 → 𝑜 ∈ GoldbachOddW ) ) → ∃ 𝑓 ∈ ( ℙ ↑m ( 1 ... 3 ) ) 𝑛 = Σ 𝑘 ∈ ( 1 ... 3 ) ( 𝑓 ‘ 𝑘 ) ) |
| 79 |
|
r19.42v |
⊢ ( ∃ 𝑓 ∈ ( ℙ ↑m ( 1 ... 3 ) ) ( 3 ≤ 3 ∧ 𝑛 = Σ 𝑘 ∈ ( 1 ... 3 ) ( 𝑓 ‘ 𝑘 ) ) ↔ ( 3 ≤ 3 ∧ ∃ 𝑓 ∈ ( ℙ ↑m ( 1 ... 3 ) ) 𝑛 = Σ 𝑘 ∈ ( 1 ... 3 ) ( 𝑓 ‘ 𝑘 ) ) ) |
| 80 |
68 78 79
|
sylanbrc |
⊢ ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 9 ) ∧ 𝑛 ∈ Odd ) ∧ ∀ 𝑜 ∈ Odd ( 5 < 𝑜 → 𝑜 ∈ GoldbachOddW ) ) → ∃ 𝑓 ∈ ( ℙ ↑m ( 1 ... 3 ) ) ( 3 ≤ 3 ∧ 𝑛 = Σ 𝑘 ∈ ( 1 ... 3 ) ( 𝑓 ‘ 𝑘 ) ) ) |
| 81 |
57 65 80
|
rspcedvd |
⊢ ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 9 ) ∧ 𝑛 ∈ Odd ) ∧ ∀ 𝑜 ∈ Odd ( 5 < 𝑜 → 𝑜 ∈ GoldbachOddW ) ) → ∃ 𝑑 ∈ ℕ ∃ 𝑓 ∈ ( ℙ ↑m ( 1 ... 𝑑 ) ) ( 𝑑 ≤ 3 ∧ 𝑛 = Σ 𝑘 ∈ ( 1 ... 𝑑 ) ( 𝑓 ‘ 𝑘 ) ) ) |
| 82 |
81
|
expcom |
⊢ ( ∀ 𝑜 ∈ Odd ( 5 < 𝑜 → 𝑜 ∈ GoldbachOddW ) → ( ( 𝑛 ∈ ( ℤ≥ ‘ 9 ) ∧ 𝑛 ∈ Odd ) → ∃ 𝑑 ∈ ℕ ∃ 𝑓 ∈ ( ℙ ↑m ( 1 ... 𝑑 ) ) ( 𝑑 ≤ 3 ∧ 𝑛 = Σ 𝑘 ∈ ( 1 ... 𝑑 ) ( 𝑓 ‘ 𝑘 ) ) ) ) |
| 83 |
|
sbgoldbwt |
⊢ ( ∀ 𝑚 ∈ Even ( 4 < 𝑚 → 𝑚 ∈ GoldbachEven ) → ∀ 𝑜 ∈ Odd ( 5 < 𝑜 → 𝑜 ∈ GoldbachOddW ) ) |
| 84 |
82 83
|
syl11 |
⊢ ( ( 𝑛 ∈ ( ℤ≥ ‘ 9 ) ∧ 𝑛 ∈ Odd ) → ( ∀ 𝑚 ∈ Even ( 4 < 𝑚 → 𝑚 ∈ GoldbachEven ) → ∃ 𝑑 ∈ ℕ ∃ 𝑓 ∈ ( ℙ ↑m ( 1 ... 𝑑 ) ) ( 𝑑 ≤ 3 ∧ 𝑛 = Σ 𝑘 ∈ ( 1 ... 𝑑 ) ( 𝑓 ‘ 𝑘 ) ) ) ) |
| 85 |
|
eluzelz |
⊢ ( 𝑛 ∈ ( ℤ≥ ‘ 9 ) → 𝑛 ∈ ℤ ) |
| 86 |
|
zeoALTV |
⊢ ( 𝑛 ∈ ℤ → ( 𝑛 ∈ Even ∨ 𝑛 ∈ Odd ) ) |
| 87 |
85 86
|
syl |
⊢ ( 𝑛 ∈ ( ℤ≥ ‘ 9 ) → ( 𝑛 ∈ Even ∨ 𝑛 ∈ Odd ) ) |
| 88 |
55 84 87
|
mpjaodan |
⊢ ( 𝑛 ∈ ( ℤ≥ ‘ 9 ) → ( ∀ 𝑚 ∈ Even ( 4 < 𝑚 → 𝑚 ∈ GoldbachEven ) → ∃ 𝑑 ∈ ℕ ∃ 𝑓 ∈ ( ℙ ↑m ( 1 ... 𝑑 ) ) ( 𝑑 ≤ 3 ∧ 𝑛 = Σ 𝑘 ∈ ( 1 ... 𝑑 ) ( 𝑓 ‘ 𝑘 ) ) ) ) |
| 89 |
32 88
|
jaoi |
⊢ ( ( 𝑛 ∈ ( 2 ..^ 9 ) ∨ 𝑛 ∈ ( ℤ≥ ‘ 9 ) ) → ( ∀ 𝑚 ∈ Even ( 4 < 𝑚 → 𝑚 ∈ GoldbachEven ) → ∃ 𝑑 ∈ ℕ ∃ 𝑓 ∈ ( ℙ ↑m ( 1 ... 𝑑 ) ) ( 𝑑 ≤ 3 ∧ 𝑛 = Σ 𝑘 ∈ ( 1 ... 𝑑 ) ( 𝑓 ‘ 𝑘 ) ) ) ) |
| 90 |
14 89
|
sylbi |
⊢ ( 𝑛 ∈ ( ℤ≥ ‘ 2 ) → ( ∀ 𝑚 ∈ Even ( 4 < 𝑚 → 𝑚 ∈ GoldbachEven ) → ∃ 𝑑 ∈ ℕ ∃ 𝑓 ∈ ( ℙ ↑m ( 1 ... 𝑑 ) ) ( 𝑑 ≤ 3 ∧ 𝑛 = Σ 𝑘 ∈ ( 1 ... 𝑑 ) ( 𝑓 ‘ 𝑘 ) ) ) ) |
| 91 |
90
|
impcom |
⊢ ( ( ∀ 𝑚 ∈ Even ( 4 < 𝑚 → 𝑚 ∈ GoldbachEven ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 2 ) ) → ∃ 𝑑 ∈ ℕ ∃ 𝑓 ∈ ( ℙ ↑m ( 1 ... 𝑑 ) ) ( 𝑑 ≤ 3 ∧ 𝑛 = Σ 𝑘 ∈ ( 1 ... 𝑑 ) ( 𝑓 ‘ 𝑘 ) ) ) |
| 92 |
91
|
ralrimiva |
⊢ ( ∀ 𝑚 ∈ Even ( 4 < 𝑚 → 𝑚 ∈ GoldbachEven ) → ∀ 𝑛 ∈ ( ℤ≥ ‘ 2 ) ∃ 𝑑 ∈ ℕ ∃ 𝑓 ∈ ( ℙ ↑m ( 1 ... 𝑑 ) ) ( 𝑑 ≤ 3 ∧ 𝑛 = Σ 𝑘 ∈ ( 1 ... 𝑑 ) ( 𝑓 ‘ 𝑘 ) ) ) |