| Step | Hyp | Ref | Expression | 
						
							| 1 |  | isgbe | ⊢ ( 𝑁  ∈   GoldbachEven   ↔  ( 𝑁  ∈   Even   ∧  ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ ( 𝑝  ∈   Odd   ∧  𝑞  ∈   Odd   ∧  𝑁  =  ( 𝑝  +  𝑞 ) ) ) ) | 
						
							| 2 |  | 2nn | ⊢ 2  ∈  ℕ | 
						
							| 3 | 2 | a1i | ⊢ ( ( ( 𝑝  ∈  ℙ  ∧  𝑞  ∈  ℙ )  ∧  ( 𝑝  ∈   Odd   ∧  𝑞  ∈   Odd   ∧  𝑁  =  ( 𝑝  +  𝑞 ) ) )  →  2  ∈  ℕ ) | 
						
							| 4 |  | oveq2 | ⊢ ( 𝑑  =  2  →  ( 1 ... 𝑑 )  =  ( 1 ... 2 ) ) | 
						
							| 5 |  | df-2 | ⊢ 2  =  ( 1  +  1 ) | 
						
							| 6 | 5 | oveq2i | ⊢ ( 1 ... 2 )  =  ( 1 ... ( 1  +  1 ) ) | 
						
							| 7 |  | 1z | ⊢ 1  ∈  ℤ | 
						
							| 8 |  | fzpr | ⊢ ( 1  ∈  ℤ  →  ( 1 ... ( 1  +  1 ) )  =  { 1 ,  ( 1  +  1 ) } ) | 
						
							| 9 | 7 8 | ax-mp | ⊢ ( 1 ... ( 1  +  1 ) )  =  { 1 ,  ( 1  +  1 ) } | 
						
							| 10 |  | 1p1e2 | ⊢ ( 1  +  1 )  =  2 | 
						
							| 11 | 10 | preq2i | ⊢ { 1 ,  ( 1  +  1 ) }  =  { 1 ,  2 } | 
						
							| 12 | 6 9 11 | 3eqtri | ⊢ ( 1 ... 2 )  =  { 1 ,  2 } | 
						
							| 13 | 4 12 | eqtrdi | ⊢ ( 𝑑  =  2  →  ( 1 ... 𝑑 )  =  { 1 ,  2 } ) | 
						
							| 14 | 13 | oveq2d | ⊢ ( 𝑑  =  2  →  ( ℙ  ↑m  ( 1 ... 𝑑 ) )  =  ( ℙ  ↑m  { 1 ,  2 } ) ) | 
						
							| 15 |  | breq1 | ⊢ ( 𝑑  =  2  →  ( 𝑑  ≤  3  ↔  2  ≤  3 ) ) | 
						
							| 16 | 13 | sumeq1d | ⊢ ( 𝑑  =  2  →  Σ 𝑘  ∈  ( 1 ... 𝑑 ) ( 𝑓 ‘ 𝑘 )  =  Σ 𝑘  ∈  { 1 ,  2 } ( 𝑓 ‘ 𝑘 ) ) | 
						
							| 17 | 16 | eqeq2d | ⊢ ( 𝑑  =  2  →  ( 𝑁  =  Σ 𝑘  ∈  ( 1 ... 𝑑 ) ( 𝑓 ‘ 𝑘 )  ↔  𝑁  =  Σ 𝑘  ∈  { 1 ,  2 } ( 𝑓 ‘ 𝑘 ) ) ) | 
						
							| 18 | 15 17 | anbi12d | ⊢ ( 𝑑  =  2  →  ( ( 𝑑  ≤  3  ∧  𝑁  =  Σ 𝑘  ∈  ( 1 ... 𝑑 ) ( 𝑓 ‘ 𝑘 ) )  ↔  ( 2  ≤  3  ∧  𝑁  =  Σ 𝑘  ∈  { 1 ,  2 } ( 𝑓 ‘ 𝑘 ) ) ) ) | 
						
							| 19 | 14 18 | rexeqbidv | ⊢ ( 𝑑  =  2  →  ( ∃ 𝑓  ∈  ( ℙ  ↑m  ( 1 ... 𝑑 ) ) ( 𝑑  ≤  3  ∧  𝑁  =  Σ 𝑘  ∈  ( 1 ... 𝑑 ) ( 𝑓 ‘ 𝑘 ) )  ↔  ∃ 𝑓  ∈  ( ℙ  ↑m  { 1 ,  2 } ) ( 2  ≤  3  ∧  𝑁  =  Σ 𝑘  ∈  { 1 ,  2 } ( 𝑓 ‘ 𝑘 ) ) ) ) | 
						
							| 20 | 19 | adantl | ⊢ ( ( ( ( 𝑝  ∈  ℙ  ∧  𝑞  ∈  ℙ )  ∧  ( 𝑝  ∈   Odd   ∧  𝑞  ∈   Odd   ∧  𝑁  =  ( 𝑝  +  𝑞 ) ) )  ∧  𝑑  =  2 )  →  ( ∃ 𝑓  ∈  ( ℙ  ↑m  ( 1 ... 𝑑 ) ) ( 𝑑  ≤  3  ∧  𝑁  =  Σ 𝑘  ∈  ( 1 ... 𝑑 ) ( 𝑓 ‘ 𝑘 ) )  ↔  ∃ 𝑓  ∈  ( ℙ  ↑m  { 1 ,  2 } ) ( 2  ≤  3  ∧  𝑁  =  Σ 𝑘  ∈  { 1 ,  2 } ( 𝑓 ‘ 𝑘 ) ) ) ) | 
						
							| 21 |  | 1ne2 | ⊢ 1  ≠  2 | 
						
							| 22 |  | 1ex | ⊢ 1  ∈  V | 
						
							| 23 |  | 2ex | ⊢ 2  ∈  V | 
						
							| 24 |  | vex | ⊢ 𝑝  ∈  V | 
						
							| 25 |  | vex | ⊢ 𝑞  ∈  V | 
						
							| 26 | 22 23 24 25 | fpr | ⊢ ( 1  ≠  2  →  { 〈 1 ,  𝑝 〉 ,  〈 2 ,  𝑞 〉 } : { 1 ,  2 } ⟶ { 𝑝 ,  𝑞 } ) | 
						
							| 27 | 21 26 | mp1i | ⊢ ( ( 𝑝  ∈  ℙ  ∧  𝑞  ∈  ℙ )  →  { 〈 1 ,  𝑝 〉 ,  〈 2 ,  𝑞 〉 } : { 1 ,  2 } ⟶ { 𝑝 ,  𝑞 } ) | 
						
							| 28 |  | prssi | ⊢ ( ( 𝑝  ∈  ℙ  ∧  𝑞  ∈  ℙ )  →  { 𝑝 ,  𝑞 }  ⊆  ℙ ) | 
						
							| 29 | 27 28 | fssd | ⊢ ( ( 𝑝  ∈  ℙ  ∧  𝑞  ∈  ℙ )  →  { 〈 1 ,  𝑝 〉 ,  〈 2 ,  𝑞 〉 } : { 1 ,  2 } ⟶ ℙ ) | 
						
							| 30 |  | prmex | ⊢ ℙ  ∈  V | 
						
							| 31 |  | prex | ⊢ { 1 ,  2 }  ∈  V | 
						
							| 32 | 30 31 | pm3.2i | ⊢ ( ℙ  ∈  V  ∧  { 1 ,  2 }  ∈  V ) | 
						
							| 33 |  | elmapg | ⊢ ( ( ℙ  ∈  V  ∧  { 1 ,  2 }  ∈  V )  →  ( { 〈 1 ,  𝑝 〉 ,  〈 2 ,  𝑞 〉 }  ∈  ( ℙ  ↑m  { 1 ,  2 } )  ↔  { 〈 1 ,  𝑝 〉 ,  〈 2 ,  𝑞 〉 } : { 1 ,  2 } ⟶ ℙ ) ) | 
						
							| 34 | 32 33 | mp1i | ⊢ ( ( 𝑝  ∈  ℙ  ∧  𝑞  ∈  ℙ )  →  ( { 〈 1 ,  𝑝 〉 ,  〈 2 ,  𝑞 〉 }  ∈  ( ℙ  ↑m  { 1 ,  2 } )  ↔  { 〈 1 ,  𝑝 〉 ,  〈 2 ,  𝑞 〉 } : { 1 ,  2 } ⟶ ℙ ) ) | 
						
							| 35 | 29 34 | mpbird | ⊢ ( ( 𝑝  ∈  ℙ  ∧  𝑞  ∈  ℙ )  →  { 〈 1 ,  𝑝 〉 ,  〈 2 ,  𝑞 〉 }  ∈  ( ℙ  ↑m  { 1 ,  2 } ) ) | 
						
							| 36 |  | fveq1 | ⊢ ( 𝑓  =  { 〈 1 ,  𝑝 〉 ,  〈 2 ,  𝑞 〉 }  →  ( 𝑓 ‘ 𝑘 )  =  ( { 〈 1 ,  𝑝 〉 ,  〈 2 ,  𝑞 〉 } ‘ 𝑘 ) ) | 
						
							| 37 | 36 | adantr | ⊢ ( ( 𝑓  =  { 〈 1 ,  𝑝 〉 ,  〈 2 ,  𝑞 〉 }  ∧  𝑘  ∈  { 1 ,  2 } )  →  ( 𝑓 ‘ 𝑘 )  =  ( { 〈 1 ,  𝑝 〉 ,  〈 2 ,  𝑞 〉 } ‘ 𝑘 ) ) | 
						
							| 38 | 37 | sumeq2dv | ⊢ ( 𝑓  =  { 〈 1 ,  𝑝 〉 ,  〈 2 ,  𝑞 〉 }  →  Σ 𝑘  ∈  { 1 ,  2 } ( 𝑓 ‘ 𝑘 )  =  Σ 𝑘  ∈  { 1 ,  2 } ( { 〈 1 ,  𝑝 〉 ,  〈 2 ,  𝑞 〉 } ‘ 𝑘 ) ) | 
						
							| 39 | 38 | eqeq1d | ⊢ ( 𝑓  =  { 〈 1 ,  𝑝 〉 ,  〈 2 ,  𝑞 〉 }  →  ( Σ 𝑘  ∈  { 1 ,  2 } ( 𝑓 ‘ 𝑘 )  =  ( 𝑝  +  𝑞 )  ↔  Σ 𝑘  ∈  { 1 ,  2 } ( { 〈 1 ,  𝑝 〉 ,  〈 2 ,  𝑞 〉 } ‘ 𝑘 )  =  ( 𝑝  +  𝑞 ) ) ) | 
						
							| 40 | 39 | anbi2d | ⊢ ( 𝑓  =  { 〈 1 ,  𝑝 〉 ,  〈 2 ,  𝑞 〉 }  →  ( ( 2  ≤  3  ∧  Σ 𝑘  ∈  { 1 ,  2 } ( 𝑓 ‘ 𝑘 )  =  ( 𝑝  +  𝑞 ) )  ↔  ( 2  ≤  3  ∧  Σ 𝑘  ∈  { 1 ,  2 } ( { 〈 1 ,  𝑝 〉 ,  〈 2 ,  𝑞 〉 } ‘ 𝑘 )  =  ( 𝑝  +  𝑞 ) ) ) ) | 
						
							| 41 | 40 | adantl | ⊢ ( ( ( 𝑝  ∈  ℙ  ∧  𝑞  ∈  ℙ )  ∧  𝑓  =  { 〈 1 ,  𝑝 〉 ,  〈 2 ,  𝑞 〉 } )  →  ( ( 2  ≤  3  ∧  Σ 𝑘  ∈  { 1 ,  2 } ( 𝑓 ‘ 𝑘 )  =  ( 𝑝  +  𝑞 ) )  ↔  ( 2  ≤  3  ∧  Σ 𝑘  ∈  { 1 ,  2 } ( { 〈 1 ,  𝑝 〉 ,  〈 2 ,  𝑞 〉 } ‘ 𝑘 )  =  ( 𝑝  +  𝑞 ) ) ) ) | 
						
							| 42 |  | prmz | ⊢ ( 𝑝  ∈  ℙ  →  𝑝  ∈  ℤ ) | 
						
							| 43 |  | prmz | ⊢ ( 𝑞  ∈  ℙ  →  𝑞  ∈  ℤ ) | 
						
							| 44 |  | fveq2 | ⊢ ( 𝑘  =  1  →  ( { 〈 1 ,  𝑝 〉 ,  〈 2 ,  𝑞 〉 } ‘ 𝑘 )  =  ( { 〈 1 ,  𝑝 〉 ,  〈 2 ,  𝑞 〉 } ‘ 1 ) ) | 
						
							| 45 | 22 24 | fvpr1 | ⊢ ( 1  ≠  2  →  ( { 〈 1 ,  𝑝 〉 ,  〈 2 ,  𝑞 〉 } ‘ 1 )  =  𝑝 ) | 
						
							| 46 | 21 45 | ax-mp | ⊢ ( { 〈 1 ,  𝑝 〉 ,  〈 2 ,  𝑞 〉 } ‘ 1 )  =  𝑝 | 
						
							| 47 | 44 46 | eqtrdi | ⊢ ( 𝑘  =  1  →  ( { 〈 1 ,  𝑝 〉 ,  〈 2 ,  𝑞 〉 } ‘ 𝑘 )  =  𝑝 ) | 
						
							| 48 |  | fveq2 | ⊢ ( 𝑘  =  2  →  ( { 〈 1 ,  𝑝 〉 ,  〈 2 ,  𝑞 〉 } ‘ 𝑘 )  =  ( { 〈 1 ,  𝑝 〉 ,  〈 2 ,  𝑞 〉 } ‘ 2 ) ) | 
						
							| 49 | 23 25 | fvpr2 | ⊢ ( 1  ≠  2  →  ( { 〈 1 ,  𝑝 〉 ,  〈 2 ,  𝑞 〉 } ‘ 2 )  =  𝑞 ) | 
						
							| 50 | 21 49 | ax-mp | ⊢ ( { 〈 1 ,  𝑝 〉 ,  〈 2 ,  𝑞 〉 } ‘ 2 )  =  𝑞 | 
						
							| 51 | 48 50 | eqtrdi | ⊢ ( 𝑘  =  2  →  ( { 〈 1 ,  𝑝 〉 ,  〈 2 ,  𝑞 〉 } ‘ 𝑘 )  =  𝑞 ) | 
						
							| 52 |  | zcn | ⊢ ( 𝑝  ∈  ℤ  →  𝑝  ∈  ℂ ) | 
						
							| 53 |  | zcn | ⊢ ( 𝑞  ∈  ℤ  →  𝑞  ∈  ℂ ) | 
						
							| 54 | 52 53 | anim12i | ⊢ ( ( 𝑝  ∈  ℤ  ∧  𝑞  ∈  ℤ )  →  ( 𝑝  ∈  ℂ  ∧  𝑞  ∈  ℂ ) ) | 
						
							| 55 | 7 2 | pm3.2i | ⊢ ( 1  ∈  ℤ  ∧  2  ∈  ℕ ) | 
						
							| 56 | 55 | a1i | ⊢ ( ( 𝑝  ∈  ℤ  ∧  𝑞  ∈  ℤ )  →  ( 1  ∈  ℤ  ∧  2  ∈  ℕ ) ) | 
						
							| 57 | 21 | a1i | ⊢ ( ( 𝑝  ∈  ℤ  ∧  𝑞  ∈  ℤ )  →  1  ≠  2 ) | 
						
							| 58 | 47 51 54 56 57 | sumpr | ⊢ ( ( 𝑝  ∈  ℤ  ∧  𝑞  ∈  ℤ )  →  Σ 𝑘  ∈  { 1 ,  2 } ( { 〈 1 ,  𝑝 〉 ,  〈 2 ,  𝑞 〉 } ‘ 𝑘 )  =  ( 𝑝  +  𝑞 ) ) | 
						
							| 59 | 42 43 58 | syl2an | ⊢ ( ( 𝑝  ∈  ℙ  ∧  𝑞  ∈  ℙ )  →  Σ 𝑘  ∈  { 1 ,  2 } ( { 〈 1 ,  𝑝 〉 ,  〈 2 ,  𝑞 〉 } ‘ 𝑘 )  =  ( 𝑝  +  𝑞 ) ) | 
						
							| 60 |  | 2re | ⊢ 2  ∈  ℝ | 
						
							| 61 |  | 3re | ⊢ 3  ∈  ℝ | 
						
							| 62 |  | 2lt3 | ⊢ 2  <  3 | 
						
							| 63 | 60 61 62 | ltleii | ⊢ 2  ≤  3 | 
						
							| 64 | 59 63 | jctil | ⊢ ( ( 𝑝  ∈  ℙ  ∧  𝑞  ∈  ℙ )  →  ( 2  ≤  3  ∧  Σ 𝑘  ∈  { 1 ,  2 } ( { 〈 1 ,  𝑝 〉 ,  〈 2 ,  𝑞 〉 } ‘ 𝑘 )  =  ( 𝑝  +  𝑞 ) ) ) | 
						
							| 65 | 35 41 64 | rspcedvd | ⊢ ( ( 𝑝  ∈  ℙ  ∧  𝑞  ∈  ℙ )  →  ∃ 𝑓  ∈  ( ℙ  ↑m  { 1 ,  2 } ) ( 2  ≤  3  ∧  Σ 𝑘  ∈  { 1 ,  2 } ( 𝑓 ‘ 𝑘 )  =  ( 𝑝  +  𝑞 ) ) ) | 
						
							| 66 | 65 | adantr | ⊢ ( ( ( 𝑝  ∈  ℙ  ∧  𝑞  ∈  ℙ )  ∧  ( 𝑝  ∈   Odd   ∧  𝑞  ∈   Odd   ∧  𝑁  =  ( 𝑝  +  𝑞 ) ) )  →  ∃ 𝑓  ∈  ( ℙ  ↑m  { 1 ,  2 } ) ( 2  ≤  3  ∧  Σ 𝑘  ∈  { 1 ,  2 } ( 𝑓 ‘ 𝑘 )  =  ( 𝑝  +  𝑞 ) ) ) | 
						
							| 67 |  | eqeq1 | ⊢ ( 𝑁  =  ( 𝑝  +  𝑞 )  →  ( 𝑁  =  Σ 𝑘  ∈  { 1 ,  2 } ( 𝑓 ‘ 𝑘 )  ↔  ( 𝑝  +  𝑞 )  =  Σ 𝑘  ∈  { 1 ,  2 } ( 𝑓 ‘ 𝑘 ) ) ) | 
						
							| 68 |  | eqcom | ⊢ ( ( 𝑝  +  𝑞 )  =  Σ 𝑘  ∈  { 1 ,  2 } ( 𝑓 ‘ 𝑘 )  ↔  Σ 𝑘  ∈  { 1 ,  2 } ( 𝑓 ‘ 𝑘 )  =  ( 𝑝  +  𝑞 ) ) | 
						
							| 69 | 67 68 | bitrdi | ⊢ ( 𝑁  =  ( 𝑝  +  𝑞 )  →  ( 𝑁  =  Σ 𝑘  ∈  { 1 ,  2 } ( 𝑓 ‘ 𝑘 )  ↔  Σ 𝑘  ∈  { 1 ,  2 } ( 𝑓 ‘ 𝑘 )  =  ( 𝑝  +  𝑞 ) ) ) | 
						
							| 70 | 69 | anbi2d | ⊢ ( 𝑁  =  ( 𝑝  +  𝑞 )  →  ( ( 2  ≤  3  ∧  𝑁  =  Σ 𝑘  ∈  { 1 ,  2 } ( 𝑓 ‘ 𝑘 ) )  ↔  ( 2  ≤  3  ∧  Σ 𝑘  ∈  { 1 ,  2 } ( 𝑓 ‘ 𝑘 )  =  ( 𝑝  +  𝑞 ) ) ) ) | 
						
							| 71 | 70 | rexbidv | ⊢ ( 𝑁  =  ( 𝑝  +  𝑞 )  →  ( ∃ 𝑓  ∈  ( ℙ  ↑m  { 1 ,  2 } ) ( 2  ≤  3  ∧  𝑁  =  Σ 𝑘  ∈  { 1 ,  2 } ( 𝑓 ‘ 𝑘 ) )  ↔  ∃ 𝑓  ∈  ( ℙ  ↑m  { 1 ,  2 } ) ( 2  ≤  3  ∧  Σ 𝑘  ∈  { 1 ,  2 } ( 𝑓 ‘ 𝑘 )  =  ( 𝑝  +  𝑞 ) ) ) ) | 
						
							| 72 | 71 | 3ad2ant3 | ⊢ ( ( 𝑝  ∈   Odd   ∧  𝑞  ∈   Odd   ∧  𝑁  =  ( 𝑝  +  𝑞 ) )  →  ( ∃ 𝑓  ∈  ( ℙ  ↑m  { 1 ,  2 } ) ( 2  ≤  3  ∧  𝑁  =  Σ 𝑘  ∈  { 1 ,  2 } ( 𝑓 ‘ 𝑘 ) )  ↔  ∃ 𝑓  ∈  ( ℙ  ↑m  { 1 ,  2 } ) ( 2  ≤  3  ∧  Σ 𝑘  ∈  { 1 ,  2 } ( 𝑓 ‘ 𝑘 )  =  ( 𝑝  +  𝑞 ) ) ) ) | 
						
							| 73 | 72 | adantl | ⊢ ( ( ( 𝑝  ∈  ℙ  ∧  𝑞  ∈  ℙ )  ∧  ( 𝑝  ∈   Odd   ∧  𝑞  ∈   Odd   ∧  𝑁  =  ( 𝑝  +  𝑞 ) ) )  →  ( ∃ 𝑓  ∈  ( ℙ  ↑m  { 1 ,  2 } ) ( 2  ≤  3  ∧  𝑁  =  Σ 𝑘  ∈  { 1 ,  2 } ( 𝑓 ‘ 𝑘 ) )  ↔  ∃ 𝑓  ∈  ( ℙ  ↑m  { 1 ,  2 } ) ( 2  ≤  3  ∧  Σ 𝑘  ∈  { 1 ,  2 } ( 𝑓 ‘ 𝑘 )  =  ( 𝑝  +  𝑞 ) ) ) ) | 
						
							| 74 | 66 73 | mpbird | ⊢ ( ( ( 𝑝  ∈  ℙ  ∧  𝑞  ∈  ℙ )  ∧  ( 𝑝  ∈   Odd   ∧  𝑞  ∈   Odd   ∧  𝑁  =  ( 𝑝  +  𝑞 ) ) )  →  ∃ 𝑓  ∈  ( ℙ  ↑m  { 1 ,  2 } ) ( 2  ≤  3  ∧  𝑁  =  Σ 𝑘  ∈  { 1 ,  2 } ( 𝑓 ‘ 𝑘 ) ) ) | 
						
							| 75 | 3 20 74 | rspcedvd | ⊢ ( ( ( 𝑝  ∈  ℙ  ∧  𝑞  ∈  ℙ )  ∧  ( 𝑝  ∈   Odd   ∧  𝑞  ∈   Odd   ∧  𝑁  =  ( 𝑝  +  𝑞 ) ) )  →  ∃ 𝑑  ∈  ℕ ∃ 𝑓  ∈  ( ℙ  ↑m  ( 1 ... 𝑑 ) ) ( 𝑑  ≤  3  ∧  𝑁  =  Σ 𝑘  ∈  ( 1 ... 𝑑 ) ( 𝑓 ‘ 𝑘 ) ) ) | 
						
							| 76 | 75 | a1d | ⊢ ( ( ( 𝑝  ∈  ℙ  ∧  𝑞  ∈  ℙ )  ∧  ( 𝑝  ∈   Odd   ∧  𝑞  ∈   Odd   ∧  𝑁  =  ( 𝑝  +  𝑞 ) ) )  →  ( 𝑁  ∈   Even   →  ∃ 𝑑  ∈  ℕ ∃ 𝑓  ∈  ( ℙ  ↑m  ( 1 ... 𝑑 ) ) ( 𝑑  ≤  3  ∧  𝑁  =  Σ 𝑘  ∈  ( 1 ... 𝑑 ) ( 𝑓 ‘ 𝑘 ) ) ) ) | 
						
							| 77 | 76 | ex | ⊢ ( ( 𝑝  ∈  ℙ  ∧  𝑞  ∈  ℙ )  →  ( ( 𝑝  ∈   Odd   ∧  𝑞  ∈   Odd   ∧  𝑁  =  ( 𝑝  +  𝑞 ) )  →  ( 𝑁  ∈   Even   →  ∃ 𝑑  ∈  ℕ ∃ 𝑓  ∈  ( ℙ  ↑m  ( 1 ... 𝑑 ) ) ( 𝑑  ≤  3  ∧  𝑁  =  Σ 𝑘  ∈  ( 1 ... 𝑑 ) ( 𝑓 ‘ 𝑘 ) ) ) ) ) | 
						
							| 78 | 77 | rexlimivv | ⊢ ( ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ ( 𝑝  ∈   Odd   ∧  𝑞  ∈   Odd   ∧  𝑁  =  ( 𝑝  +  𝑞 ) )  →  ( 𝑁  ∈   Even   →  ∃ 𝑑  ∈  ℕ ∃ 𝑓  ∈  ( ℙ  ↑m  ( 1 ... 𝑑 ) ) ( 𝑑  ≤  3  ∧  𝑁  =  Σ 𝑘  ∈  ( 1 ... 𝑑 ) ( 𝑓 ‘ 𝑘 ) ) ) ) | 
						
							| 79 | 78 | impcom | ⊢ ( ( 𝑁  ∈   Even   ∧  ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ ( 𝑝  ∈   Odd   ∧  𝑞  ∈   Odd   ∧  𝑁  =  ( 𝑝  +  𝑞 ) ) )  →  ∃ 𝑑  ∈  ℕ ∃ 𝑓  ∈  ( ℙ  ↑m  ( 1 ... 𝑑 ) ) ( 𝑑  ≤  3  ∧  𝑁  =  Σ 𝑘  ∈  ( 1 ... 𝑑 ) ( 𝑓 ‘ 𝑘 ) ) ) | 
						
							| 80 | 1 79 | sylbi | ⊢ ( 𝑁  ∈   GoldbachEven   →  ∃ 𝑑  ∈  ℕ ∃ 𝑓  ∈  ( ℙ  ↑m  ( 1 ... 𝑑 ) ) ( 𝑑  ≤  3  ∧  𝑁  =  Σ 𝑘  ∈  ( 1 ... 𝑑 ) ( 𝑓 ‘ 𝑘 ) ) ) |