| Step | Hyp | Ref | Expression | 
						
							| 1 |  | isgbe |  |-  ( N e. GoldbachEven <-> ( N e. Even /\ E. p e. Prime E. q e. Prime ( p e. Odd /\ q e. Odd /\ N = ( p + q ) ) ) ) | 
						
							| 2 |  | 2nn |  |-  2 e. NN | 
						
							| 3 | 2 | a1i |  |-  ( ( ( p e. Prime /\ q e. Prime ) /\ ( p e. Odd /\ q e. Odd /\ N = ( p + q ) ) ) -> 2 e. NN ) | 
						
							| 4 |  | oveq2 |  |-  ( d = 2 -> ( 1 ... d ) = ( 1 ... 2 ) ) | 
						
							| 5 |  | df-2 |  |-  2 = ( 1 + 1 ) | 
						
							| 6 | 5 | oveq2i |  |-  ( 1 ... 2 ) = ( 1 ... ( 1 + 1 ) ) | 
						
							| 7 |  | 1z |  |-  1 e. ZZ | 
						
							| 8 |  | fzpr |  |-  ( 1 e. ZZ -> ( 1 ... ( 1 + 1 ) ) = { 1 , ( 1 + 1 ) } ) | 
						
							| 9 | 7 8 | ax-mp |  |-  ( 1 ... ( 1 + 1 ) ) = { 1 , ( 1 + 1 ) } | 
						
							| 10 |  | 1p1e2 |  |-  ( 1 + 1 ) = 2 | 
						
							| 11 | 10 | preq2i |  |-  { 1 , ( 1 + 1 ) } = { 1 , 2 } | 
						
							| 12 | 6 9 11 | 3eqtri |  |-  ( 1 ... 2 ) = { 1 , 2 } | 
						
							| 13 | 4 12 | eqtrdi |  |-  ( d = 2 -> ( 1 ... d ) = { 1 , 2 } ) | 
						
							| 14 | 13 | oveq2d |  |-  ( d = 2 -> ( Prime ^m ( 1 ... d ) ) = ( Prime ^m { 1 , 2 } ) ) | 
						
							| 15 |  | breq1 |  |-  ( d = 2 -> ( d <_ 3 <-> 2 <_ 3 ) ) | 
						
							| 16 | 13 | sumeq1d |  |-  ( d = 2 -> sum_ k e. ( 1 ... d ) ( f ` k ) = sum_ k e. { 1 , 2 } ( f ` k ) ) | 
						
							| 17 | 16 | eqeq2d |  |-  ( d = 2 -> ( N = sum_ k e. ( 1 ... d ) ( f ` k ) <-> N = sum_ k e. { 1 , 2 } ( f ` k ) ) ) | 
						
							| 18 | 15 17 | anbi12d |  |-  ( d = 2 -> ( ( d <_ 3 /\ N = sum_ k e. ( 1 ... d ) ( f ` k ) ) <-> ( 2 <_ 3 /\ N = sum_ k e. { 1 , 2 } ( f ` k ) ) ) ) | 
						
							| 19 | 14 18 | rexeqbidv |  |-  ( d = 2 -> ( E. f e. ( Prime ^m ( 1 ... d ) ) ( d <_ 3 /\ N = sum_ k e. ( 1 ... d ) ( f ` k ) ) <-> E. f e. ( Prime ^m { 1 , 2 } ) ( 2 <_ 3 /\ N = sum_ k e. { 1 , 2 } ( f ` k ) ) ) ) | 
						
							| 20 | 19 | adantl |  |-  ( ( ( ( p e. Prime /\ q e. Prime ) /\ ( p e. Odd /\ q e. Odd /\ N = ( p + q ) ) ) /\ d = 2 ) -> ( E. f e. ( Prime ^m ( 1 ... d ) ) ( d <_ 3 /\ N = sum_ k e. ( 1 ... d ) ( f ` k ) ) <-> E. f e. ( Prime ^m { 1 , 2 } ) ( 2 <_ 3 /\ N = sum_ k e. { 1 , 2 } ( f ` k ) ) ) ) | 
						
							| 21 |  | 1ne2 |  |-  1 =/= 2 | 
						
							| 22 |  | 1ex |  |-  1 e. _V | 
						
							| 23 |  | 2ex |  |-  2 e. _V | 
						
							| 24 |  | vex |  |-  p e. _V | 
						
							| 25 |  | vex |  |-  q e. _V | 
						
							| 26 | 22 23 24 25 | fpr |  |-  ( 1 =/= 2 -> { <. 1 , p >. , <. 2 , q >. } : { 1 , 2 } --> { p , q } ) | 
						
							| 27 | 21 26 | mp1i |  |-  ( ( p e. Prime /\ q e. Prime ) -> { <. 1 , p >. , <. 2 , q >. } : { 1 , 2 } --> { p , q } ) | 
						
							| 28 |  | prssi |  |-  ( ( p e. Prime /\ q e. Prime ) -> { p , q } C_ Prime ) | 
						
							| 29 | 27 28 | fssd |  |-  ( ( p e. Prime /\ q e. Prime ) -> { <. 1 , p >. , <. 2 , q >. } : { 1 , 2 } --> Prime ) | 
						
							| 30 |  | prmex |  |-  Prime e. _V | 
						
							| 31 |  | prex |  |-  { 1 , 2 } e. _V | 
						
							| 32 | 30 31 | pm3.2i |  |-  ( Prime e. _V /\ { 1 , 2 } e. _V ) | 
						
							| 33 |  | elmapg |  |-  ( ( Prime e. _V /\ { 1 , 2 } e. _V ) -> ( { <. 1 , p >. , <. 2 , q >. } e. ( Prime ^m { 1 , 2 } ) <-> { <. 1 , p >. , <. 2 , q >. } : { 1 , 2 } --> Prime ) ) | 
						
							| 34 | 32 33 | mp1i |  |-  ( ( p e. Prime /\ q e. Prime ) -> ( { <. 1 , p >. , <. 2 , q >. } e. ( Prime ^m { 1 , 2 } ) <-> { <. 1 , p >. , <. 2 , q >. } : { 1 , 2 } --> Prime ) ) | 
						
							| 35 | 29 34 | mpbird |  |-  ( ( p e. Prime /\ q e. Prime ) -> { <. 1 , p >. , <. 2 , q >. } e. ( Prime ^m { 1 , 2 } ) ) | 
						
							| 36 |  | fveq1 |  |-  ( f = { <. 1 , p >. , <. 2 , q >. } -> ( f ` k ) = ( { <. 1 , p >. , <. 2 , q >. } ` k ) ) | 
						
							| 37 | 36 | adantr |  |-  ( ( f = { <. 1 , p >. , <. 2 , q >. } /\ k e. { 1 , 2 } ) -> ( f ` k ) = ( { <. 1 , p >. , <. 2 , q >. } ` k ) ) | 
						
							| 38 | 37 | sumeq2dv |  |-  ( f = { <. 1 , p >. , <. 2 , q >. } -> sum_ k e. { 1 , 2 } ( f ` k ) = sum_ k e. { 1 , 2 } ( { <. 1 , p >. , <. 2 , q >. } ` k ) ) | 
						
							| 39 | 38 | eqeq1d |  |-  ( f = { <. 1 , p >. , <. 2 , q >. } -> ( sum_ k e. { 1 , 2 } ( f ` k ) = ( p + q ) <-> sum_ k e. { 1 , 2 } ( { <. 1 , p >. , <. 2 , q >. } ` k ) = ( p + q ) ) ) | 
						
							| 40 | 39 | anbi2d |  |-  ( f = { <. 1 , p >. , <. 2 , q >. } -> ( ( 2 <_ 3 /\ sum_ k e. { 1 , 2 } ( f ` k ) = ( p + q ) ) <-> ( 2 <_ 3 /\ sum_ k e. { 1 , 2 } ( { <. 1 , p >. , <. 2 , q >. } ` k ) = ( p + q ) ) ) ) | 
						
							| 41 | 40 | adantl |  |-  ( ( ( p e. Prime /\ q e. Prime ) /\ f = { <. 1 , p >. , <. 2 , q >. } ) -> ( ( 2 <_ 3 /\ sum_ k e. { 1 , 2 } ( f ` k ) = ( p + q ) ) <-> ( 2 <_ 3 /\ sum_ k e. { 1 , 2 } ( { <. 1 , p >. , <. 2 , q >. } ` k ) = ( p + q ) ) ) ) | 
						
							| 42 |  | prmz |  |-  ( p e. Prime -> p e. ZZ ) | 
						
							| 43 |  | prmz |  |-  ( q e. Prime -> q e. ZZ ) | 
						
							| 44 |  | fveq2 |  |-  ( k = 1 -> ( { <. 1 , p >. , <. 2 , q >. } ` k ) = ( { <. 1 , p >. , <. 2 , q >. } ` 1 ) ) | 
						
							| 45 | 22 24 | fvpr1 |  |-  ( 1 =/= 2 -> ( { <. 1 , p >. , <. 2 , q >. } ` 1 ) = p ) | 
						
							| 46 | 21 45 | ax-mp |  |-  ( { <. 1 , p >. , <. 2 , q >. } ` 1 ) = p | 
						
							| 47 | 44 46 | eqtrdi |  |-  ( k = 1 -> ( { <. 1 , p >. , <. 2 , q >. } ` k ) = p ) | 
						
							| 48 |  | fveq2 |  |-  ( k = 2 -> ( { <. 1 , p >. , <. 2 , q >. } ` k ) = ( { <. 1 , p >. , <. 2 , q >. } ` 2 ) ) | 
						
							| 49 | 23 25 | fvpr2 |  |-  ( 1 =/= 2 -> ( { <. 1 , p >. , <. 2 , q >. } ` 2 ) = q ) | 
						
							| 50 | 21 49 | ax-mp |  |-  ( { <. 1 , p >. , <. 2 , q >. } ` 2 ) = q | 
						
							| 51 | 48 50 | eqtrdi |  |-  ( k = 2 -> ( { <. 1 , p >. , <. 2 , q >. } ` k ) = q ) | 
						
							| 52 |  | zcn |  |-  ( p e. ZZ -> p e. CC ) | 
						
							| 53 |  | zcn |  |-  ( q e. ZZ -> q e. CC ) | 
						
							| 54 | 52 53 | anim12i |  |-  ( ( p e. ZZ /\ q e. ZZ ) -> ( p e. CC /\ q e. CC ) ) | 
						
							| 55 | 7 2 | pm3.2i |  |-  ( 1 e. ZZ /\ 2 e. NN ) | 
						
							| 56 | 55 | a1i |  |-  ( ( p e. ZZ /\ q e. ZZ ) -> ( 1 e. ZZ /\ 2 e. NN ) ) | 
						
							| 57 | 21 | a1i |  |-  ( ( p e. ZZ /\ q e. ZZ ) -> 1 =/= 2 ) | 
						
							| 58 | 47 51 54 56 57 | sumpr |  |-  ( ( p e. ZZ /\ q e. ZZ ) -> sum_ k e. { 1 , 2 } ( { <. 1 , p >. , <. 2 , q >. } ` k ) = ( p + q ) ) | 
						
							| 59 | 42 43 58 | syl2an |  |-  ( ( p e. Prime /\ q e. Prime ) -> sum_ k e. { 1 , 2 } ( { <. 1 , p >. , <. 2 , q >. } ` k ) = ( p + q ) ) | 
						
							| 60 |  | 2re |  |-  2 e. RR | 
						
							| 61 |  | 3re |  |-  3 e. RR | 
						
							| 62 |  | 2lt3 |  |-  2 < 3 | 
						
							| 63 | 60 61 62 | ltleii |  |-  2 <_ 3 | 
						
							| 64 | 59 63 | jctil |  |-  ( ( p e. Prime /\ q e. Prime ) -> ( 2 <_ 3 /\ sum_ k e. { 1 , 2 } ( { <. 1 , p >. , <. 2 , q >. } ` k ) = ( p + q ) ) ) | 
						
							| 65 | 35 41 64 | rspcedvd |  |-  ( ( p e. Prime /\ q e. Prime ) -> E. f e. ( Prime ^m { 1 , 2 } ) ( 2 <_ 3 /\ sum_ k e. { 1 , 2 } ( f ` k ) = ( p + q ) ) ) | 
						
							| 66 | 65 | adantr |  |-  ( ( ( p e. Prime /\ q e. Prime ) /\ ( p e. Odd /\ q e. Odd /\ N = ( p + q ) ) ) -> E. f e. ( Prime ^m { 1 , 2 } ) ( 2 <_ 3 /\ sum_ k e. { 1 , 2 } ( f ` k ) = ( p + q ) ) ) | 
						
							| 67 |  | eqeq1 |  |-  ( N = ( p + q ) -> ( N = sum_ k e. { 1 , 2 } ( f ` k ) <-> ( p + q ) = sum_ k e. { 1 , 2 } ( f ` k ) ) ) | 
						
							| 68 |  | eqcom |  |-  ( ( p + q ) = sum_ k e. { 1 , 2 } ( f ` k ) <-> sum_ k e. { 1 , 2 } ( f ` k ) = ( p + q ) ) | 
						
							| 69 | 67 68 | bitrdi |  |-  ( N = ( p + q ) -> ( N = sum_ k e. { 1 , 2 } ( f ` k ) <-> sum_ k e. { 1 , 2 } ( f ` k ) = ( p + q ) ) ) | 
						
							| 70 | 69 | anbi2d |  |-  ( N = ( p + q ) -> ( ( 2 <_ 3 /\ N = sum_ k e. { 1 , 2 } ( f ` k ) ) <-> ( 2 <_ 3 /\ sum_ k e. { 1 , 2 } ( f ` k ) = ( p + q ) ) ) ) | 
						
							| 71 | 70 | rexbidv |  |-  ( N = ( p + q ) -> ( E. f e. ( Prime ^m { 1 , 2 } ) ( 2 <_ 3 /\ N = sum_ k e. { 1 , 2 } ( f ` k ) ) <-> E. f e. ( Prime ^m { 1 , 2 } ) ( 2 <_ 3 /\ sum_ k e. { 1 , 2 } ( f ` k ) = ( p + q ) ) ) ) | 
						
							| 72 | 71 | 3ad2ant3 |  |-  ( ( p e. Odd /\ q e. Odd /\ N = ( p + q ) ) -> ( E. f e. ( Prime ^m { 1 , 2 } ) ( 2 <_ 3 /\ N = sum_ k e. { 1 , 2 } ( f ` k ) ) <-> E. f e. ( Prime ^m { 1 , 2 } ) ( 2 <_ 3 /\ sum_ k e. { 1 , 2 } ( f ` k ) = ( p + q ) ) ) ) | 
						
							| 73 | 72 | adantl |  |-  ( ( ( p e. Prime /\ q e. Prime ) /\ ( p e. Odd /\ q e. Odd /\ N = ( p + q ) ) ) -> ( E. f e. ( Prime ^m { 1 , 2 } ) ( 2 <_ 3 /\ N = sum_ k e. { 1 , 2 } ( f ` k ) ) <-> E. f e. ( Prime ^m { 1 , 2 } ) ( 2 <_ 3 /\ sum_ k e. { 1 , 2 } ( f ` k ) = ( p + q ) ) ) ) | 
						
							| 74 | 66 73 | mpbird |  |-  ( ( ( p e. Prime /\ q e. Prime ) /\ ( p e. Odd /\ q e. Odd /\ N = ( p + q ) ) ) -> E. f e. ( Prime ^m { 1 , 2 } ) ( 2 <_ 3 /\ N = sum_ k e. { 1 , 2 } ( f ` k ) ) ) | 
						
							| 75 | 3 20 74 | rspcedvd |  |-  ( ( ( p e. Prime /\ q e. Prime ) /\ ( p e. Odd /\ q e. Odd /\ N = ( p + q ) ) ) -> E. d e. NN E. f e. ( Prime ^m ( 1 ... d ) ) ( d <_ 3 /\ N = sum_ k e. ( 1 ... d ) ( f ` k ) ) ) | 
						
							| 76 | 75 | a1d |  |-  ( ( ( p e. Prime /\ q e. Prime ) /\ ( p e. Odd /\ q e. Odd /\ N = ( p + q ) ) ) -> ( N e. Even -> E. d e. NN E. f e. ( Prime ^m ( 1 ... d ) ) ( d <_ 3 /\ N = sum_ k e. ( 1 ... d ) ( f ` k ) ) ) ) | 
						
							| 77 | 76 | ex |  |-  ( ( p e. Prime /\ q e. Prime ) -> ( ( p e. Odd /\ q e. Odd /\ N = ( p + q ) ) -> ( N e. Even -> E. d e. NN E. f e. ( Prime ^m ( 1 ... d ) ) ( d <_ 3 /\ N = sum_ k e. ( 1 ... d ) ( f ` k ) ) ) ) ) | 
						
							| 78 | 77 | rexlimivv |  |-  ( E. p e. Prime E. q e. Prime ( p e. Odd /\ q e. Odd /\ N = ( p + q ) ) -> ( N e. Even -> E. d e. NN E. f e. ( Prime ^m ( 1 ... d ) ) ( d <_ 3 /\ N = sum_ k e. ( 1 ... d ) ( f ` k ) ) ) ) | 
						
							| 79 | 78 | impcom |  |-  ( ( N e. Even /\ E. p e. Prime E. q e. Prime ( p e. Odd /\ q e. Odd /\ N = ( p + q ) ) ) -> E. d e. NN E. f e. ( Prime ^m ( 1 ... d ) ) ( d <_ 3 /\ N = sum_ k e. ( 1 ... d ) ( f ` k ) ) ) | 
						
							| 80 | 1 79 | sylbi |  |-  ( N e. GoldbachEven -> E. d e. NN E. f e. ( Prime ^m ( 1 ... d ) ) ( d <_ 3 /\ N = sum_ k e. ( 1 ... d ) ( f ` k ) ) ) |