Metamath Proof Explorer


Theorem nnsum3primesgbe

Description: Any even Goldbach number is the sum of at most 3 (actually 2) primes. (Contributed by AV, 2-Aug-2020)

Ref Expression
Assertion nnsum3primesgbe NGoldbachEvendf1dd3N=k=1dfk

Proof

Step Hyp Ref Expression
1 isgbe NGoldbachEvenNEvenpqpOddqOddN=p+q
2 2nn 2
3 2 a1i pqpOddqOddN=p+q2
4 oveq2 d=21d=12
5 df-2 2=1+1
6 5 oveq2i 12=11+1
7 1z 1
8 fzpr 111+1=11+1
9 7 8 ax-mp 11+1=11+1
10 1p1e2 1+1=2
11 10 preq2i 11+1=12
12 6 9 11 3eqtri 12=12
13 4 12 eqtrdi d=21d=12
14 13 oveq2d d=21d=12
15 breq1 d=2d323
16 13 sumeq1d d=2k=1dfk=k12fk
17 16 eqeq2d d=2N=k=1dfkN=k12fk
18 15 17 anbi12d d=2d3N=k=1dfk23N=k12fk
19 14 18 rexeqbidv d=2f1dd3N=k=1dfkf1223N=k12fk
20 19 adantl pqpOddqOddN=p+qd=2f1dd3N=k=1dfkf1223N=k12fk
21 1ne2 12
22 1ex 1V
23 2ex 2V
24 vex pV
25 vex qV
26 22 23 24 25 fpr 121p2q:12pq
27 21 26 mp1i pq1p2q:12pq
28 prssi pqpq
29 27 28 fssd pq1p2q:12
30 prmex V
31 prex 12V
32 30 31 pm3.2i V12V
33 elmapg V12V1p2q121p2q:12
34 32 33 mp1i pq1p2q121p2q:12
35 29 34 mpbird pq1p2q12
36 fveq1 f=1p2qfk=1p2qk
37 36 adantr f=1p2qk12fk=1p2qk
38 37 sumeq2dv f=1p2qk12fk=k121p2qk
39 38 eqeq1d f=1p2qk12fk=p+qk121p2qk=p+q
40 39 anbi2d f=1p2q23k12fk=p+q23k121p2qk=p+q
41 40 adantl pqf=1p2q23k12fk=p+q23k121p2qk=p+q
42 prmz pp
43 prmz qq
44 fveq2 k=11p2qk=1p2q1
45 22 24 fvpr1 121p2q1=p
46 21 45 ax-mp 1p2q1=p
47 44 46 eqtrdi k=11p2qk=p
48 fveq2 k=21p2qk=1p2q2
49 23 25 fvpr2 121p2q2=q
50 21 49 ax-mp 1p2q2=q
51 48 50 eqtrdi k=21p2qk=q
52 zcn pp
53 zcn qq
54 52 53 anim12i pqpq
55 7 2 pm3.2i 12
56 55 a1i pq12
57 21 a1i pq12
58 47 51 54 56 57 sumpr pqk121p2qk=p+q
59 42 43 58 syl2an pqk121p2qk=p+q
60 2re 2
61 3re 3
62 2lt3 2<3
63 60 61 62 ltleii 23
64 59 63 jctil pq23k121p2qk=p+q
65 35 41 64 rspcedvd pqf1223k12fk=p+q
66 65 adantr pqpOddqOddN=p+qf1223k12fk=p+q
67 eqeq1 N=p+qN=k12fkp+q=k12fk
68 eqcom p+q=k12fkk12fk=p+q
69 67 68 bitrdi N=p+qN=k12fkk12fk=p+q
70 69 anbi2d N=p+q23N=k12fk23k12fk=p+q
71 70 rexbidv N=p+qf1223N=k12fkf1223k12fk=p+q
72 71 3ad2ant3 pOddqOddN=p+qf1223N=k12fkf1223k12fk=p+q
73 72 adantl pqpOddqOddN=p+qf1223N=k12fkf1223k12fk=p+q
74 66 73 mpbird pqpOddqOddN=p+qf1223N=k12fk
75 3 20 74 rspcedvd pqpOddqOddN=p+qdf1dd3N=k=1dfk
76 75 a1d pqpOddqOddN=p+qNEvendf1dd3N=k=1dfk
77 76 ex pqpOddqOddN=p+qNEvendf1dd3N=k=1dfk
78 77 rexlimivv pqpOddqOddN=p+qNEvendf1dd3N=k=1dfk
79 78 impcom NEvenpqpOddqOddN=p+qdf1dd3N=k=1dfk
80 1 79 sylbi NGoldbachEvendf1dd3N=k=1dfk