Description: Any even Goldbach number is the sum of at most 3 (actually 2) primes. (Contributed by AV, 2-Aug-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | nnsum3primesgbe | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isgbe | |
|
2 | 2nn | |
|
3 | 2 | a1i | |
4 | oveq2 | |
|
5 | df-2 | |
|
6 | 5 | oveq2i | |
7 | 1z | |
|
8 | fzpr | |
|
9 | 7 8 | ax-mp | |
10 | 1p1e2 | |
|
11 | 10 | preq2i | |
12 | 6 9 11 | 3eqtri | |
13 | 4 12 | eqtrdi | |
14 | 13 | oveq2d | |
15 | breq1 | |
|
16 | 13 | sumeq1d | |
17 | 16 | eqeq2d | |
18 | 15 17 | anbi12d | |
19 | 14 18 | rexeqbidv | |
20 | 19 | adantl | |
21 | 1ne2 | |
|
22 | 1ex | |
|
23 | 2ex | |
|
24 | vex | |
|
25 | vex | |
|
26 | 22 23 24 25 | fpr | |
27 | 21 26 | mp1i | |
28 | prssi | |
|
29 | 27 28 | fssd | |
30 | prmex | |
|
31 | prex | |
|
32 | 30 31 | pm3.2i | |
33 | elmapg | |
|
34 | 32 33 | mp1i | |
35 | 29 34 | mpbird | |
36 | fveq1 | |
|
37 | 36 | adantr | |
38 | 37 | sumeq2dv | |
39 | 38 | eqeq1d | |
40 | 39 | anbi2d | |
41 | 40 | adantl | |
42 | prmz | |
|
43 | prmz | |
|
44 | fveq2 | |
|
45 | 22 24 | fvpr1 | |
46 | 21 45 | ax-mp | |
47 | 44 46 | eqtrdi | |
48 | fveq2 | |
|
49 | 23 25 | fvpr2 | |
50 | 21 49 | ax-mp | |
51 | 48 50 | eqtrdi | |
52 | zcn | |
|
53 | zcn | |
|
54 | 52 53 | anim12i | |
55 | 7 2 | pm3.2i | |
56 | 55 | a1i | |
57 | 21 | a1i | |
58 | 47 51 54 56 57 | sumpr | |
59 | 42 43 58 | syl2an | |
60 | 2re | |
|
61 | 3re | |
|
62 | 2lt3 | |
|
63 | 60 61 62 | ltleii | |
64 | 59 63 | jctil | |
65 | 35 41 64 | rspcedvd | |
66 | 65 | adantr | |
67 | eqeq1 | |
|
68 | eqcom | |
|
69 | 67 68 | bitrdi | |
70 | 69 | anbi2d | |
71 | 70 | rexbidv | |
72 | 71 | 3ad2ant3 | |
73 | 72 | adantl | |
74 | 66 73 | mpbird | |
75 | 3 20 74 | rspcedvd | |
76 | 75 | a1d | |
77 | 76 | ex | |
78 | 77 | rexlimivv | |
79 | 78 | impcom | |
80 | 1 79 | sylbi | |