| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eluzelre | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  →  𝑁  ∈  ℝ ) | 
						
							| 2 |  | 8re | ⊢ 8  ∈  ℝ | 
						
							| 3 | 2 | a1i | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  →  8  ∈  ℝ ) | 
						
							| 4 | 1 3 | leloed | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  →  ( 𝑁  ≤  8  ↔  ( 𝑁  <  8  ∨  𝑁  =  8 ) ) ) | 
						
							| 5 |  | eluzelz | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  →  𝑁  ∈  ℤ ) | 
						
							| 6 |  | 7nn | ⊢ 7  ∈  ℕ | 
						
							| 7 | 6 | nnzi | ⊢ 7  ∈  ℤ | 
						
							| 8 |  | zleltp1 | ⊢ ( ( 𝑁  ∈  ℤ  ∧  7  ∈  ℤ )  →  ( 𝑁  ≤  7  ↔  𝑁  <  ( 7  +  1 ) ) ) | 
						
							| 9 | 5 7 8 | sylancl | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  →  ( 𝑁  ≤  7  ↔  𝑁  <  ( 7  +  1 ) ) ) | 
						
							| 10 |  | 7re | ⊢ 7  ∈  ℝ | 
						
							| 11 | 10 | a1i | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  →  7  ∈  ℝ ) | 
						
							| 12 | 1 11 | leloed | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  →  ( 𝑁  ≤  7  ↔  ( 𝑁  <  7  ∨  𝑁  =  7 ) ) ) | 
						
							| 13 |  | 7p1e8 | ⊢ ( 7  +  1 )  =  8 | 
						
							| 14 | 13 | breq2i | ⊢ ( 𝑁  <  ( 7  +  1 )  ↔  𝑁  <  8 ) | 
						
							| 15 | 14 | a1i | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  →  ( 𝑁  <  ( 7  +  1 )  ↔  𝑁  <  8 ) ) | 
						
							| 16 | 9 12 15 | 3bitr3rd | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  →  ( 𝑁  <  8  ↔  ( 𝑁  <  7  ∨  𝑁  =  7 ) ) ) | 
						
							| 17 |  | 6nn | ⊢ 6  ∈  ℕ | 
						
							| 18 | 17 | nnzi | ⊢ 6  ∈  ℤ | 
						
							| 19 |  | zleltp1 | ⊢ ( ( 𝑁  ∈  ℤ  ∧  6  ∈  ℤ )  →  ( 𝑁  ≤  6  ↔  𝑁  <  ( 6  +  1 ) ) ) | 
						
							| 20 | 5 18 19 | sylancl | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  →  ( 𝑁  ≤  6  ↔  𝑁  <  ( 6  +  1 ) ) ) | 
						
							| 21 |  | 6re | ⊢ 6  ∈  ℝ | 
						
							| 22 | 21 | a1i | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  →  6  ∈  ℝ ) | 
						
							| 23 | 1 22 | leloed | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  →  ( 𝑁  ≤  6  ↔  ( 𝑁  <  6  ∨  𝑁  =  6 ) ) ) | 
						
							| 24 |  | 6p1e7 | ⊢ ( 6  +  1 )  =  7 | 
						
							| 25 | 24 | breq2i | ⊢ ( 𝑁  <  ( 6  +  1 )  ↔  𝑁  <  7 ) | 
						
							| 26 | 25 | a1i | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  →  ( 𝑁  <  ( 6  +  1 )  ↔  𝑁  <  7 ) ) | 
						
							| 27 | 20 23 26 | 3bitr3rd | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  →  ( 𝑁  <  7  ↔  ( 𝑁  <  6  ∨  𝑁  =  6 ) ) ) | 
						
							| 28 |  | 5nn | ⊢ 5  ∈  ℕ | 
						
							| 29 | 28 | nnzi | ⊢ 5  ∈  ℤ | 
						
							| 30 |  | zleltp1 | ⊢ ( ( 𝑁  ∈  ℤ  ∧  5  ∈  ℤ )  →  ( 𝑁  ≤  5  ↔  𝑁  <  ( 5  +  1 ) ) ) | 
						
							| 31 | 5 29 30 | sylancl | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  →  ( 𝑁  ≤  5  ↔  𝑁  <  ( 5  +  1 ) ) ) | 
						
							| 32 |  | 5re | ⊢ 5  ∈  ℝ | 
						
							| 33 | 32 | a1i | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  →  5  ∈  ℝ ) | 
						
							| 34 | 1 33 | leloed | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  →  ( 𝑁  ≤  5  ↔  ( 𝑁  <  5  ∨  𝑁  =  5 ) ) ) | 
						
							| 35 |  | 5p1e6 | ⊢ ( 5  +  1 )  =  6 | 
						
							| 36 | 35 | breq2i | ⊢ ( 𝑁  <  ( 5  +  1 )  ↔  𝑁  <  6 ) | 
						
							| 37 | 36 | a1i | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  →  ( 𝑁  <  ( 5  +  1 )  ↔  𝑁  <  6 ) ) | 
						
							| 38 | 31 34 37 | 3bitr3rd | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  →  ( 𝑁  <  6  ↔  ( 𝑁  <  5  ∨  𝑁  =  5 ) ) ) | 
						
							| 39 |  | 4z | ⊢ 4  ∈  ℤ | 
						
							| 40 |  | zleltp1 | ⊢ ( ( 𝑁  ∈  ℤ  ∧  4  ∈  ℤ )  →  ( 𝑁  ≤  4  ↔  𝑁  <  ( 4  +  1 ) ) ) | 
						
							| 41 | 5 39 40 | sylancl | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  →  ( 𝑁  ≤  4  ↔  𝑁  <  ( 4  +  1 ) ) ) | 
						
							| 42 |  | 4re | ⊢ 4  ∈  ℝ | 
						
							| 43 | 42 | a1i | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  →  4  ∈  ℝ ) | 
						
							| 44 | 1 43 | leloed | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  →  ( 𝑁  ≤  4  ↔  ( 𝑁  <  4  ∨  𝑁  =  4 ) ) ) | 
						
							| 45 |  | 4p1e5 | ⊢ ( 4  +  1 )  =  5 | 
						
							| 46 | 45 | breq2i | ⊢ ( 𝑁  <  ( 4  +  1 )  ↔  𝑁  <  5 ) | 
						
							| 47 | 46 | a1i | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  →  ( 𝑁  <  ( 4  +  1 )  ↔  𝑁  <  5 ) ) | 
						
							| 48 | 41 44 47 | 3bitr3rd | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  →  ( 𝑁  <  5  ↔  ( 𝑁  <  4  ∨  𝑁  =  4 ) ) ) | 
						
							| 49 |  | 3z | ⊢ 3  ∈  ℤ | 
						
							| 50 |  | zleltp1 | ⊢ ( ( 𝑁  ∈  ℤ  ∧  3  ∈  ℤ )  →  ( 𝑁  ≤  3  ↔  𝑁  <  ( 3  +  1 ) ) ) | 
						
							| 51 | 5 49 50 | sylancl | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  →  ( 𝑁  ≤  3  ↔  𝑁  <  ( 3  +  1 ) ) ) | 
						
							| 52 |  | 3re | ⊢ 3  ∈  ℝ | 
						
							| 53 | 52 | a1i | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  →  3  ∈  ℝ ) | 
						
							| 54 | 1 53 | leloed | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  →  ( 𝑁  ≤  3  ↔  ( 𝑁  <  3  ∨  𝑁  =  3 ) ) ) | 
						
							| 55 |  | 3p1e4 | ⊢ ( 3  +  1 )  =  4 | 
						
							| 56 | 55 | breq2i | ⊢ ( 𝑁  <  ( 3  +  1 )  ↔  𝑁  <  4 ) | 
						
							| 57 | 56 | a1i | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  →  ( 𝑁  <  ( 3  +  1 )  ↔  𝑁  <  4 ) ) | 
						
							| 58 | 51 54 57 | 3bitr3rd | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  →  ( 𝑁  <  4  ↔  ( 𝑁  <  3  ∨  𝑁  =  3 ) ) ) | 
						
							| 59 |  | eluz2 | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  ↔  ( 2  ∈  ℤ  ∧  𝑁  ∈  ℤ  ∧  2  ≤  𝑁 ) ) | 
						
							| 60 |  | 2re | ⊢ 2  ∈  ℝ | 
						
							| 61 | 60 | a1i | ⊢ ( 𝑁  ∈  ℤ  →  2  ∈  ℝ ) | 
						
							| 62 |  | zre | ⊢ ( 𝑁  ∈  ℤ  →  𝑁  ∈  ℝ ) | 
						
							| 63 | 61 62 | leloed | ⊢ ( 𝑁  ∈  ℤ  →  ( 2  ≤  𝑁  ↔  ( 2  <  𝑁  ∨  2  =  𝑁 ) ) ) | 
						
							| 64 |  | 3m1e2 | ⊢ ( 3  −  1 )  =  2 | 
						
							| 65 | 64 | eqcomi | ⊢ 2  =  ( 3  −  1 ) | 
						
							| 66 | 65 | breq1i | ⊢ ( 2  <  𝑁  ↔  ( 3  −  1 )  <  𝑁 ) | 
						
							| 67 |  | zlem1lt | ⊢ ( ( 3  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( 3  ≤  𝑁  ↔  ( 3  −  1 )  <  𝑁 ) ) | 
						
							| 68 | 49 67 | mpan | ⊢ ( 𝑁  ∈  ℤ  →  ( 3  ≤  𝑁  ↔  ( 3  −  1 )  <  𝑁 ) ) | 
						
							| 69 | 68 | biimprd | ⊢ ( 𝑁  ∈  ℤ  →  ( ( 3  −  1 )  <  𝑁  →  3  ≤  𝑁 ) ) | 
						
							| 70 | 66 69 | biimtrid | ⊢ ( 𝑁  ∈  ℤ  →  ( 2  <  𝑁  →  3  ≤  𝑁 ) ) | 
						
							| 71 | 52 | a1i | ⊢ ( 𝑁  ∈  ℤ  →  3  ∈  ℝ ) | 
						
							| 72 | 71 62 | lenltd | ⊢ ( 𝑁  ∈  ℤ  →  ( 3  ≤  𝑁  ↔  ¬  𝑁  <  3 ) ) | 
						
							| 73 |  | pm2.21 | ⊢ ( ¬  𝑁  <  3  →  ( 𝑁  <  3  →  𝑁  =  2 ) ) | 
						
							| 74 | 72 73 | biimtrdi | ⊢ ( 𝑁  ∈  ℤ  →  ( 3  ≤  𝑁  →  ( 𝑁  <  3  →  𝑁  =  2 ) ) ) | 
						
							| 75 | 70 74 | syldc | ⊢ ( 2  <  𝑁  →  ( 𝑁  ∈  ℤ  →  ( 𝑁  <  3  →  𝑁  =  2 ) ) ) | 
						
							| 76 |  | eqcom | ⊢ ( 2  =  𝑁  ↔  𝑁  =  2 ) | 
						
							| 77 | 76 | biimpi | ⊢ ( 2  =  𝑁  →  𝑁  =  2 ) | 
						
							| 78 | 77 | 2a1d | ⊢ ( 2  =  𝑁  →  ( 𝑁  ∈  ℤ  →  ( 𝑁  <  3  →  𝑁  =  2 ) ) ) | 
						
							| 79 | 75 78 | jaoi | ⊢ ( ( 2  <  𝑁  ∨  2  =  𝑁 )  →  ( 𝑁  ∈  ℤ  →  ( 𝑁  <  3  →  𝑁  =  2 ) ) ) | 
						
							| 80 | 79 | com12 | ⊢ ( 𝑁  ∈  ℤ  →  ( ( 2  <  𝑁  ∨  2  =  𝑁 )  →  ( 𝑁  <  3  →  𝑁  =  2 ) ) ) | 
						
							| 81 | 63 80 | sylbid | ⊢ ( 𝑁  ∈  ℤ  →  ( 2  ≤  𝑁  →  ( 𝑁  <  3  →  𝑁  =  2 ) ) ) | 
						
							| 82 | 81 | imp | ⊢ ( ( 𝑁  ∈  ℤ  ∧  2  ≤  𝑁 )  →  ( 𝑁  <  3  →  𝑁  =  2 ) ) | 
						
							| 83 |  | 2lt3 | ⊢ 2  <  3 | 
						
							| 84 |  | breq1 | ⊢ ( 𝑁  =  2  →  ( 𝑁  <  3  ↔  2  <  3 ) ) | 
						
							| 85 | 83 84 | mpbiri | ⊢ ( 𝑁  =  2  →  𝑁  <  3 ) | 
						
							| 86 | 82 85 | impbid1 | ⊢ ( ( 𝑁  ∈  ℤ  ∧  2  ≤  𝑁 )  →  ( 𝑁  <  3  ↔  𝑁  =  2 ) ) | 
						
							| 87 | 86 | 3adant1 | ⊢ ( ( 2  ∈  ℤ  ∧  𝑁  ∈  ℤ  ∧  2  ≤  𝑁 )  →  ( 𝑁  <  3  ↔  𝑁  =  2 ) ) | 
						
							| 88 | 59 87 | sylbi | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  →  ( 𝑁  <  3  ↔  𝑁  =  2 ) ) | 
						
							| 89 | 88 | orbi1d | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  →  ( ( 𝑁  <  3  ∨  𝑁  =  3 )  ↔  ( 𝑁  =  2  ∨  𝑁  =  3 ) ) ) | 
						
							| 90 | 58 89 | bitrd | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  →  ( 𝑁  <  4  ↔  ( 𝑁  =  2  ∨  𝑁  =  3 ) ) ) | 
						
							| 91 | 90 | orbi1d | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  →  ( ( 𝑁  <  4  ∨  𝑁  =  4 )  ↔  ( ( 𝑁  =  2  ∨  𝑁  =  3 )  ∨  𝑁  =  4 ) ) ) | 
						
							| 92 | 48 91 | bitrd | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  →  ( 𝑁  <  5  ↔  ( ( 𝑁  =  2  ∨  𝑁  =  3 )  ∨  𝑁  =  4 ) ) ) | 
						
							| 93 | 92 | orbi1d | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  →  ( ( 𝑁  <  5  ∨  𝑁  =  5 )  ↔  ( ( ( 𝑁  =  2  ∨  𝑁  =  3 )  ∨  𝑁  =  4 )  ∨  𝑁  =  5 ) ) ) | 
						
							| 94 | 38 93 | bitrd | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  →  ( 𝑁  <  6  ↔  ( ( ( 𝑁  =  2  ∨  𝑁  =  3 )  ∨  𝑁  =  4 )  ∨  𝑁  =  5 ) ) ) | 
						
							| 95 | 94 | orbi1d | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  →  ( ( 𝑁  <  6  ∨  𝑁  =  6 )  ↔  ( ( ( ( 𝑁  =  2  ∨  𝑁  =  3 )  ∨  𝑁  =  4 )  ∨  𝑁  =  5 )  ∨  𝑁  =  6 ) ) ) | 
						
							| 96 | 27 95 | bitrd | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  →  ( 𝑁  <  7  ↔  ( ( ( ( 𝑁  =  2  ∨  𝑁  =  3 )  ∨  𝑁  =  4 )  ∨  𝑁  =  5 )  ∨  𝑁  =  6 ) ) ) | 
						
							| 97 | 96 | orbi1d | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  →  ( ( 𝑁  <  7  ∨  𝑁  =  7 )  ↔  ( ( ( ( ( 𝑁  =  2  ∨  𝑁  =  3 )  ∨  𝑁  =  4 )  ∨  𝑁  =  5 )  ∨  𝑁  =  6 )  ∨  𝑁  =  7 ) ) ) | 
						
							| 98 | 16 97 | bitrd | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  →  ( 𝑁  <  8  ↔  ( ( ( ( ( 𝑁  =  2  ∨  𝑁  =  3 )  ∨  𝑁  =  4 )  ∨  𝑁  =  5 )  ∨  𝑁  =  6 )  ∨  𝑁  =  7 ) ) ) | 
						
							| 99 | 98 | orbi1d | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  →  ( ( 𝑁  <  8  ∨  𝑁  =  8 )  ↔  ( ( ( ( ( ( 𝑁  =  2  ∨  𝑁  =  3 )  ∨  𝑁  =  4 )  ∨  𝑁  =  5 )  ∨  𝑁  =  6 )  ∨  𝑁  =  7 )  ∨  𝑁  =  8 ) ) ) | 
						
							| 100 | 99 | biimpd | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  →  ( ( 𝑁  <  8  ∨  𝑁  =  8 )  →  ( ( ( ( ( ( 𝑁  =  2  ∨  𝑁  =  3 )  ∨  𝑁  =  4 )  ∨  𝑁  =  5 )  ∨  𝑁  =  6 )  ∨  𝑁  =  7 )  ∨  𝑁  =  8 ) ) ) | 
						
							| 101 | 4 100 | sylbid | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  →  ( 𝑁  ≤  8  →  ( ( ( ( ( ( 𝑁  =  2  ∨  𝑁  =  3 )  ∨  𝑁  =  4 )  ∨  𝑁  =  5 )  ∨  𝑁  =  6 )  ∨  𝑁  =  7 )  ∨  𝑁  =  8 ) ) ) | 
						
							| 102 | 101 | imp | ⊢ ( ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑁  ≤  8 )  →  ( ( ( ( ( ( 𝑁  =  2  ∨  𝑁  =  3 )  ∨  𝑁  =  4 )  ∨  𝑁  =  5 )  ∨  𝑁  =  6 )  ∨  𝑁  =  7 )  ∨  𝑁  =  8 ) ) | 
						
							| 103 |  | 2prm | ⊢ 2  ∈  ℙ | 
						
							| 104 |  | eleq1 | ⊢ ( 𝑁  =  2  →  ( 𝑁  ∈  ℙ  ↔  2  ∈  ℙ ) ) | 
						
							| 105 | 103 104 | mpbiri | ⊢ ( 𝑁  =  2  →  𝑁  ∈  ℙ ) | 
						
							| 106 |  | nnsum3primesprm | ⊢ ( 𝑁  ∈  ℙ  →  ∃ 𝑑  ∈  ℕ ∃ 𝑓  ∈  ( ℙ  ↑m  ( 1 ... 𝑑 ) ) ( 𝑑  ≤  3  ∧  𝑁  =  Σ 𝑘  ∈  ( 1 ... 𝑑 ) ( 𝑓 ‘ 𝑘 ) ) ) | 
						
							| 107 | 105 106 | syl | ⊢ ( 𝑁  =  2  →  ∃ 𝑑  ∈  ℕ ∃ 𝑓  ∈  ( ℙ  ↑m  ( 1 ... 𝑑 ) ) ( 𝑑  ≤  3  ∧  𝑁  =  Σ 𝑘  ∈  ( 1 ... 𝑑 ) ( 𝑓 ‘ 𝑘 ) ) ) | 
						
							| 108 |  | 3prm | ⊢ 3  ∈  ℙ | 
						
							| 109 |  | eleq1 | ⊢ ( 𝑁  =  3  →  ( 𝑁  ∈  ℙ  ↔  3  ∈  ℙ ) ) | 
						
							| 110 | 108 109 | mpbiri | ⊢ ( 𝑁  =  3  →  𝑁  ∈  ℙ ) | 
						
							| 111 | 110 106 | syl | ⊢ ( 𝑁  =  3  →  ∃ 𝑑  ∈  ℕ ∃ 𝑓  ∈  ( ℙ  ↑m  ( 1 ... 𝑑 ) ) ( 𝑑  ≤  3  ∧  𝑁  =  Σ 𝑘  ∈  ( 1 ... 𝑑 ) ( 𝑓 ‘ 𝑘 ) ) ) | 
						
							| 112 | 107 111 | jaoi | ⊢ ( ( 𝑁  =  2  ∨  𝑁  =  3 )  →  ∃ 𝑑  ∈  ℕ ∃ 𝑓  ∈  ( ℙ  ↑m  ( 1 ... 𝑑 ) ) ( 𝑑  ≤  3  ∧  𝑁  =  Σ 𝑘  ∈  ( 1 ... 𝑑 ) ( 𝑓 ‘ 𝑘 ) ) ) | 
						
							| 113 |  | nnsum3primes4 | ⊢ ∃ 𝑑  ∈  ℕ ∃ 𝑓  ∈  ( ℙ  ↑m  ( 1 ... 𝑑 ) ) ( 𝑑  ≤  3  ∧  4  =  Σ 𝑘  ∈  ( 1 ... 𝑑 ) ( 𝑓 ‘ 𝑘 ) ) | 
						
							| 114 |  | eqeq1 | ⊢ ( 𝑁  =  4  →  ( 𝑁  =  Σ 𝑘  ∈  ( 1 ... 𝑑 ) ( 𝑓 ‘ 𝑘 )  ↔  4  =  Σ 𝑘  ∈  ( 1 ... 𝑑 ) ( 𝑓 ‘ 𝑘 ) ) ) | 
						
							| 115 | 114 | anbi2d | ⊢ ( 𝑁  =  4  →  ( ( 𝑑  ≤  3  ∧  𝑁  =  Σ 𝑘  ∈  ( 1 ... 𝑑 ) ( 𝑓 ‘ 𝑘 ) )  ↔  ( 𝑑  ≤  3  ∧  4  =  Σ 𝑘  ∈  ( 1 ... 𝑑 ) ( 𝑓 ‘ 𝑘 ) ) ) ) | 
						
							| 116 | 115 | 2rexbidv | ⊢ ( 𝑁  =  4  →  ( ∃ 𝑑  ∈  ℕ ∃ 𝑓  ∈  ( ℙ  ↑m  ( 1 ... 𝑑 ) ) ( 𝑑  ≤  3  ∧  𝑁  =  Σ 𝑘  ∈  ( 1 ... 𝑑 ) ( 𝑓 ‘ 𝑘 ) )  ↔  ∃ 𝑑  ∈  ℕ ∃ 𝑓  ∈  ( ℙ  ↑m  ( 1 ... 𝑑 ) ) ( 𝑑  ≤  3  ∧  4  =  Σ 𝑘  ∈  ( 1 ... 𝑑 ) ( 𝑓 ‘ 𝑘 ) ) ) ) | 
						
							| 117 | 113 116 | mpbiri | ⊢ ( 𝑁  =  4  →  ∃ 𝑑  ∈  ℕ ∃ 𝑓  ∈  ( ℙ  ↑m  ( 1 ... 𝑑 ) ) ( 𝑑  ≤  3  ∧  𝑁  =  Σ 𝑘  ∈  ( 1 ... 𝑑 ) ( 𝑓 ‘ 𝑘 ) ) ) | 
						
							| 118 | 112 117 | jaoi | ⊢ ( ( ( 𝑁  =  2  ∨  𝑁  =  3 )  ∨  𝑁  =  4 )  →  ∃ 𝑑  ∈  ℕ ∃ 𝑓  ∈  ( ℙ  ↑m  ( 1 ... 𝑑 ) ) ( 𝑑  ≤  3  ∧  𝑁  =  Σ 𝑘  ∈  ( 1 ... 𝑑 ) ( 𝑓 ‘ 𝑘 ) ) ) | 
						
							| 119 |  | 5prm | ⊢ 5  ∈  ℙ | 
						
							| 120 |  | eleq1 | ⊢ ( 𝑁  =  5  →  ( 𝑁  ∈  ℙ  ↔  5  ∈  ℙ ) ) | 
						
							| 121 | 119 120 | mpbiri | ⊢ ( 𝑁  =  5  →  𝑁  ∈  ℙ ) | 
						
							| 122 | 121 106 | syl | ⊢ ( 𝑁  =  5  →  ∃ 𝑑  ∈  ℕ ∃ 𝑓  ∈  ( ℙ  ↑m  ( 1 ... 𝑑 ) ) ( 𝑑  ≤  3  ∧  𝑁  =  Σ 𝑘  ∈  ( 1 ... 𝑑 ) ( 𝑓 ‘ 𝑘 ) ) ) | 
						
							| 123 | 118 122 | jaoi | ⊢ ( ( ( ( 𝑁  =  2  ∨  𝑁  =  3 )  ∨  𝑁  =  4 )  ∨  𝑁  =  5 )  →  ∃ 𝑑  ∈  ℕ ∃ 𝑓  ∈  ( ℙ  ↑m  ( 1 ... 𝑑 ) ) ( 𝑑  ≤  3  ∧  𝑁  =  Σ 𝑘  ∈  ( 1 ... 𝑑 ) ( 𝑓 ‘ 𝑘 ) ) ) | 
						
							| 124 |  | 6gbe | ⊢ 6  ∈   GoldbachEven | 
						
							| 125 |  | eleq1 | ⊢ ( 𝑁  =  6  →  ( 𝑁  ∈   GoldbachEven   ↔  6  ∈   GoldbachEven  ) ) | 
						
							| 126 | 124 125 | mpbiri | ⊢ ( 𝑁  =  6  →  𝑁  ∈   GoldbachEven  ) | 
						
							| 127 |  | nnsum3primesgbe | ⊢ ( 𝑁  ∈   GoldbachEven   →  ∃ 𝑑  ∈  ℕ ∃ 𝑓  ∈  ( ℙ  ↑m  ( 1 ... 𝑑 ) ) ( 𝑑  ≤  3  ∧  𝑁  =  Σ 𝑘  ∈  ( 1 ... 𝑑 ) ( 𝑓 ‘ 𝑘 ) ) ) | 
						
							| 128 | 126 127 | syl | ⊢ ( 𝑁  =  6  →  ∃ 𝑑  ∈  ℕ ∃ 𝑓  ∈  ( ℙ  ↑m  ( 1 ... 𝑑 ) ) ( 𝑑  ≤  3  ∧  𝑁  =  Σ 𝑘  ∈  ( 1 ... 𝑑 ) ( 𝑓 ‘ 𝑘 ) ) ) | 
						
							| 129 | 123 128 | jaoi | ⊢ ( ( ( ( ( 𝑁  =  2  ∨  𝑁  =  3 )  ∨  𝑁  =  4 )  ∨  𝑁  =  5 )  ∨  𝑁  =  6 )  →  ∃ 𝑑  ∈  ℕ ∃ 𝑓  ∈  ( ℙ  ↑m  ( 1 ... 𝑑 ) ) ( 𝑑  ≤  3  ∧  𝑁  =  Σ 𝑘  ∈  ( 1 ... 𝑑 ) ( 𝑓 ‘ 𝑘 ) ) ) | 
						
							| 130 |  | 7prm | ⊢ 7  ∈  ℙ | 
						
							| 131 |  | eleq1 | ⊢ ( 𝑁  =  7  →  ( 𝑁  ∈  ℙ  ↔  7  ∈  ℙ ) ) | 
						
							| 132 | 130 131 | mpbiri | ⊢ ( 𝑁  =  7  →  𝑁  ∈  ℙ ) | 
						
							| 133 | 132 106 | syl | ⊢ ( 𝑁  =  7  →  ∃ 𝑑  ∈  ℕ ∃ 𝑓  ∈  ( ℙ  ↑m  ( 1 ... 𝑑 ) ) ( 𝑑  ≤  3  ∧  𝑁  =  Σ 𝑘  ∈  ( 1 ... 𝑑 ) ( 𝑓 ‘ 𝑘 ) ) ) | 
						
							| 134 | 129 133 | jaoi | ⊢ ( ( ( ( ( ( 𝑁  =  2  ∨  𝑁  =  3 )  ∨  𝑁  =  4 )  ∨  𝑁  =  5 )  ∨  𝑁  =  6 )  ∨  𝑁  =  7 )  →  ∃ 𝑑  ∈  ℕ ∃ 𝑓  ∈  ( ℙ  ↑m  ( 1 ... 𝑑 ) ) ( 𝑑  ≤  3  ∧  𝑁  =  Σ 𝑘  ∈  ( 1 ... 𝑑 ) ( 𝑓 ‘ 𝑘 ) ) ) | 
						
							| 135 |  | 8gbe | ⊢ 8  ∈   GoldbachEven | 
						
							| 136 |  | eleq1 | ⊢ ( 𝑁  =  8  →  ( 𝑁  ∈   GoldbachEven   ↔  8  ∈   GoldbachEven  ) ) | 
						
							| 137 | 135 136 | mpbiri | ⊢ ( 𝑁  =  8  →  𝑁  ∈   GoldbachEven  ) | 
						
							| 138 | 137 127 | syl | ⊢ ( 𝑁  =  8  →  ∃ 𝑑  ∈  ℕ ∃ 𝑓  ∈  ( ℙ  ↑m  ( 1 ... 𝑑 ) ) ( 𝑑  ≤  3  ∧  𝑁  =  Σ 𝑘  ∈  ( 1 ... 𝑑 ) ( 𝑓 ‘ 𝑘 ) ) ) | 
						
							| 139 | 134 138 | jaoi | ⊢ ( ( ( ( ( ( ( 𝑁  =  2  ∨  𝑁  =  3 )  ∨  𝑁  =  4 )  ∨  𝑁  =  5 )  ∨  𝑁  =  6 )  ∨  𝑁  =  7 )  ∨  𝑁  =  8 )  →  ∃ 𝑑  ∈  ℕ ∃ 𝑓  ∈  ( ℙ  ↑m  ( 1 ... 𝑑 ) ) ( 𝑑  ≤  3  ∧  𝑁  =  Σ 𝑘  ∈  ( 1 ... 𝑑 ) ( 𝑓 ‘ 𝑘 ) ) ) | 
						
							| 140 | 102 139 | syl | ⊢ ( ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑁  ≤  8 )  →  ∃ 𝑑  ∈  ℕ ∃ 𝑓  ∈  ( ℙ  ↑m  ( 1 ... 𝑑 ) ) ( 𝑑  ≤  3  ∧  𝑁  =  Σ 𝑘  ∈  ( 1 ... 𝑑 ) ( 𝑓 ‘ 𝑘 ) ) ) |