Step |
Hyp |
Ref |
Expression |
1 |
|
eluzelre |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → 𝑁 ∈ ℝ ) |
2 |
|
8re |
⊢ 8 ∈ ℝ |
3 |
2
|
a1i |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → 8 ∈ ℝ ) |
4 |
1 3
|
leloed |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → ( 𝑁 ≤ 8 ↔ ( 𝑁 < 8 ∨ 𝑁 = 8 ) ) ) |
5 |
|
eluzelz |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → 𝑁 ∈ ℤ ) |
6 |
|
7nn |
⊢ 7 ∈ ℕ |
7 |
6
|
nnzi |
⊢ 7 ∈ ℤ |
8 |
|
zleltp1 |
⊢ ( ( 𝑁 ∈ ℤ ∧ 7 ∈ ℤ ) → ( 𝑁 ≤ 7 ↔ 𝑁 < ( 7 + 1 ) ) ) |
9 |
5 7 8
|
sylancl |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → ( 𝑁 ≤ 7 ↔ 𝑁 < ( 7 + 1 ) ) ) |
10 |
|
7re |
⊢ 7 ∈ ℝ |
11 |
10
|
a1i |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → 7 ∈ ℝ ) |
12 |
1 11
|
leloed |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → ( 𝑁 ≤ 7 ↔ ( 𝑁 < 7 ∨ 𝑁 = 7 ) ) ) |
13 |
|
7p1e8 |
⊢ ( 7 + 1 ) = 8 |
14 |
13
|
breq2i |
⊢ ( 𝑁 < ( 7 + 1 ) ↔ 𝑁 < 8 ) |
15 |
14
|
a1i |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → ( 𝑁 < ( 7 + 1 ) ↔ 𝑁 < 8 ) ) |
16 |
9 12 15
|
3bitr3rd |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → ( 𝑁 < 8 ↔ ( 𝑁 < 7 ∨ 𝑁 = 7 ) ) ) |
17 |
|
6nn |
⊢ 6 ∈ ℕ |
18 |
17
|
nnzi |
⊢ 6 ∈ ℤ |
19 |
|
zleltp1 |
⊢ ( ( 𝑁 ∈ ℤ ∧ 6 ∈ ℤ ) → ( 𝑁 ≤ 6 ↔ 𝑁 < ( 6 + 1 ) ) ) |
20 |
5 18 19
|
sylancl |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → ( 𝑁 ≤ 6 ↔ 𝑁 < ( 6 + 1 ) ) ) |
21 |
|
6re |
⊢ 6 ∈ ℝ |
22 |
21
|
a1i |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → 6 ∈ ℝ ) |
23 |
1 22
|
leloed |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → ( 𝑁 ≤ 6 ↔ ( 𝑁 < 6 ∨ 𝑁 = 6 ) ) ) |
24 |
|
6p1e7 |
⊢ ( 6 + 1 ) = 7 |
25 |
24
|
breq2i |
⊢ ( 𝑁 < ( 6 + 1 ) ↔ 𝑁 < 7 ) |
26 |
25
|
a1i |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → ( 𝑁 < ( 6 + 1 ) ↔ 𝑁 < 7 ) ) |
27 |
20 23 26
|
3bitr3rd |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → ( 𝑁 < 7 ↔ ( 𝑁 < 6 ∨ 𝑁 = 6 ) ) ) |
28 |
|
5nn |
⊢ 5 ∈ ℕ |
29 |
28
|
nnzi |
⊢ 5 ∈ ℤ |
30 |
|
zleltp1 |
⊢ ( ( 𝑁 ∈ ℤ ∧ 5 ∈ ℤ ) → ( 𝑁 ≤ 5 ↔ 𝑁 < ( 5 + 1 ) ) ) |
31 |
5 29 30
|
sylancl |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → ( 𝑁 ≤ 5 ↔ 𝑁 < ( 5 + 1 ) ) ) |
32 |
|
5re |
⊢ 5 ∈ ℝ |
33 |
32
|
a1i |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → 5 ∈ ℝ ) |
34 |
1 33
|
leloed |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → ( 𝑁 ≤ 5 ↔ ( 𝑁 < 5 ∨ 𝑁 = 5 ) ) ) |
35 |
|
5p1e6 |
⊢ ( 5 + 1 ) = 6 |
36 |
35
|
breq2i |
⊢ ( 𝑁 < ( 5 + 1 ) ↔ 𝑁 < 6 ) |
37 |
36
|
a1i |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → ( 𝑁 < ( 5 + 1 ) ↔ 𝑁 < 6 ) ) |
38 |
31 34 37
|
3bitr3rd |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → ( 𝑁 < 6 ↔ ( 𝑁 < 5 ∨ 𝑁 = 5 ) ) ) |
39 |
|
4z |
⊢ 4 ∈ ℤ |
40 |
|
zleltp1 |
⊢ ( ( 𝑁 ∈ ℤ ∧ 4 ∈ ℤ ) → ( 𝑁 ≤ 4 ↔ 𝑁 < ( 4 + 1 ) ) ) |
41 |
5 39 40
|
sylancl |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → ( 𝑁 ≤ 4 ↔ 𝑁 < ( 4 + 1 ) ) ) |
42 |
|
4re |
⊢ 4 ∈ ℝ |
43 |
42
|
a1i |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → 4 ∈ ℝ ) |
44 |
1 43
|
leloed |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → ( 𝑁 ≤ 4 ↔ ( 𝑁 < 4 ∨ 𝑁 = 4 ) ) ) |
45 |
|
4p1e5 |
⊢ ( 4 + 1 ) = 5 |
46 |
45
|
breq2i |
⊢ ( 𝑁 < ( 4 + 1 ) ↔ 𝑁 < 5 ) |
47 |
46
|
a1i |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → ( 𝑁 < ( 4 + 1 ) ↔ 𝑁 < 5 ) ) |
48 |
41 44 47
|
3bitr3rd |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → ( 𝑁 < 5 ↔ ( 𝑁 < 4 ∨ 𝑁 = 4 ) ) ) |
49 |
|
3z |
⊢ 3 ∈ ℤ |
50 |
|
zleltp1 |
⊢ ( ( 𝑁 ∈ ℤ ∧ 3 ∈ ℤ ) → ( 𝑁 ≤ 3 ↔ 𝑁 < ( 3 + 1 ) ) ) |
51 |
5 49 50
|
sylancl |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → ( 𝑁 ≤ 3 ↔ 𝑁 < ( 3 + 1 ) ) ) |
52 |
|
3re |
⊢ 3 ∈ ℝ |
53 |
52
|
a1i |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → 3 ∈ ℝ ) |
54 |
1 53
|
leloed |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → ( 𝑁 ≤ 3 ↔ ( 𝑁 < 3 ∨ 𝑁 = 3 ) ) ) |
55 |
|
3p1e4 |
⊢ ( 3 + 1 ) = 4 |
56 |
55
|
breq2i |
⊢ ( 𝑁 < ( 3 + 1 ) ↔ 𝑁 < 4 ) |
57 |
56
|
a1i |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → ( 𝑁 < ( 3 + 1 ) ↔ 𝑁 < 4 ) ) |
58 |
51 54 57
|
3bitr3rd |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → ( 𝑁 < 4 ↔ ( 𝑁 < 3 ∨ 𝑁 = 3 ) ) ) |
59 |
|
eluz2 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ↔ ( 2 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 2 ≤ 𝑁 ) ) |
60 |
|
2re |
⊢ 2 ∈ ℝ |
61 |
60
|
a1i |
⊢ ( 𝑁 ∈ ℤ → 2 ∈ ℝ ) |
62 |
|
zre |
⊢ ( 𝑁 ∈ ℤ → 𝑁 ∈ ℝ ) |
63 |
61 62
|
leloed |
⊢ ( 𝑁 ∈ ℤ → ( 2 ≤ 𝑁 ↔ ( 2 < 𝑁 ∨ 2 = 𝑁 ) ) ) |
64 |
|
3m1e2 |
⊢ ( 3 − 1 ) = 2 |
65 |
64
|
eqcomi |
⊢ 2 = ( 3 − 1 ) |
66 |
65
|
breq1i |
⊢ ( 2 < 𝑁 ↔ ( 3 − 1 ) < 𝑁 ) |
67 |
|
zlem1lt |
⊢ ( ( 3 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 3 ≤ 𝑁 ↔ ( 3 − 1 ) < 𝑁 ) ) |
68 |
49 67
|
mpan |
⊢ ( 𝑁 ∈ ℤ → ( 3 ≤ 𝑁 ↔ ( 3 − 1 ) < 𝑁 ) ) |
69 |
68
|
biimprd |
⊢ ( 𝑁 ∈ ℤ → ( ( 3 − 1 ) < 𝑁 → 3 ≤ 𝑁 ) ) |
70 |
66 69
|
syl5bi |
⊢ ( 𝑁 ∈ ℤ → ( 2 < 𝑁 → 3 ≤ 𝑁 ) ) |
71 |
52
|
a1i |
⊢ ( 𝑁 ∈ ℤ → 3 ∈ ℝ ) |
72 |
71 62
|
lenltd |
⊢ ( 𝑁 ∈ ℤ → ( 3 ≤ 𝑁 ↔ ¬ 𝑁 < 3 ) ) |
73 |
|
pm2.21 |
⊢ ( ¬ 𝑁 < 3 → ( 𝑁 < 3 → 𝑁 = 2 ) ) |
74 |
72 73
|
syl6bi |
⊢ ( 𝑁 ∈ ℤ → ( 3 ≤ 𝑁 → ( 𝑁 < 3 → 𝑁 = 2 ) ) ) |
75 |
70 74
|
syldc |
⊢ ( 2 < 𝑁 → ( 𝑁 ∈ ℤ → ( 𝑁 < 3 → 𝑁 = 2 ) ) ) |
76 |
|
eqcom |
⊢ ( 2 = 𝑁 ↔ 𝑁 = 2 ) |
77 |
76
|
biimpi |
⊢ ( 2 = 𝑁 → 𝑁 = 2 ) |
78 |
77
|
2a1d |
⊢ ( 2 = 𝑁 → ( 𝑁 ∈ ℤ → ( 𝑁 < 3 → 𝑁 = 2 ) ) ) |
79 |
75 78
|
jaoi |
⊢ ( ( 2 < 𝑁 ∨ 2 = 𝑁 ) → ( 𝑁 ∈ ℤ → ( 𝑁 < 3 → 𝑁 = 2 ) ) ) |
80 |
79
|
com12 |
⊢ ( 𝑁 ∈ ℤ → ( ( 2 < 𝑁 ∨ 2 = 𝑁 ) → ( 𝑁 < 3 → 𝑁 = 2 ) ) ) |
81 |
63 80
|
sylbid |
⊢ ( 𝑁 ∈ ℤ → ( 2 ≤ 𝑁 → ( 𝑁 < 3 → 𝑁 = 2 ) ) ) |
82 |
81
|
imp |
⊢ ( ( 𝑁 ∈ ℤ ∧ 2 ≤ 𝑁 ) → ( 𝑁 < 3 → 𝑁 = 2 ) ) |
83 |
|
2lt3 |
⊢ 2 < 3 |
84 |
|
breq1 |
⊢ ( 𝑁 = 2 → ( 𝑁 < 3 ↔ 2 < 3 ) ) |
85 |
83 84
|
mpbiri |
⊢ ( 𝑁 = 2 → 𝑁 < 3 ) |
86 |
82 85
|
impbid1 |
⊢ ( ( 𝑁 ∈ ℤ ∧ 2 ≤ 𝑁 ) → ( 𝑁 < 3 ↔ 𝑁 = 2 ) ) |
87 |
86
|
3adant1 |
⊢ ( ( 2 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 2 ≤ 𝑁 ) → ( 𝑁 < 3 ↔ 𝑁 = 2 ) ) |
88 |
59 87
|
sylbi |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → ( 𝑁 < 3 ↔ 𝑁 = 2 ) ) |
89 |
88
|
orbi1d |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → ( ( 𝑁 < 3 ∨ 𝑁 = 3 ) ↔ ( 𝑁 = 2 ∨ 𝑁 = 3 ) ) ) |
90 |
58 89
|
bitrd |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → ( 𝑁 < 4 ↔ ( 𝑁 = 2 ∨ 𝑁 = 3 ) ) ) |
91 |
90
|
orbi1d |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → ( ( 𝑁 < 4 ∨ 𝑁 = 4 ) ↔ ( ( 𝑁 = 2 ∨ 𝑁 = 3 ) ∨ 𝑁 = 4 ) ) ) |
92 |
48 91
|
bitrd |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → ( 𝑁 < 5 ↔ ( ( 𝑁 = 2 ∨ 𝑁 = 3 ) ∨ 𝑁 = 4 ) ) ) |
93 |
92
|
orbi1d |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → ( ( 𝑁 < 5 ∨ 𝑁 = 5 ) ↔ ( ( ( 𝑁 = 2 ∨ 𝑁 = 3 ) ∨ 𝑁 = 4 ) ∨ 𝑁 = 5 ) ) ) |
94 |
38 93
|
bitrd |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → ( 𝑁 < 6 ↔ ( ( ( 𝑁 = 2 ∨ 𝑁 = 3 ) ∨ 𝑁 = 4 ) ∨ 𝑁 = 5 ) ) ) |
95 |
94
|
orbi1d |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → ( ( 𝑁 < 6 ∨ 𝑁 = 6 ) ↔ ( ( ( ( 𝑁 = 2 ∨ 𝑁 = 3 ) ∨ 𝑁 = 4 ) ∨ 𝑁 = 5 ) ∨ 𝑁 = 6 ) ) ) |
96 |
27 95
|
bitrd |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → ( 𝑁 < 7 ↔ ( ( ( ( 𝑁 = 2 ∨ 𝑁 = 3 ) ∨ 𝑁 = 4 ) ∨ 𝑁 = 5 ) ∨ 𝑁 = 6 ) ) ) |
97 |
96
|
orbi1d |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → ( ( 𝑁 < 7 ∨ 𝑁 = 7 ) ↔ ( ( ( ( ( 𝑁 = 2 ∨ 𝑁 = 3 ) ∨ 𝑁 = 4 ) ∨ 𝑁 = 5 ) ∨ 𝑁 = 6 ) ∨ 𝑁 = 7 ) ) ) |
98 |
16 97
|
bitrd |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → ( 𝑁 < 8 ↔ ( ( ( ( ( 𝑁 = 2 ∨ 𝑁 = 3 ) ∨ 𝑁 = 4 ) ∨ 𝑁 = 5 ) ∨ 𝑁 = 6 ) ∨ 𝑁 = 7 ) ) ) |
99 |
98
|
orbi1d |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → ( ( 𝑁 < 8 ∨ 𝑁 = 8 ) ↔ ( ( ( ( ( ( 𝑁 = 2 ∨ 𝑁 = 3 ) ∨ 𝑁 = 4 ) ∨ 𝑁 = 5 ) ∨ 𝑁 = 6 ) ∨ 𝑁 = 7 ) ∨ 𝑁 = 8 ) ) ) |
100 |
99
|
biimpd |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → ( ( 𝑁 < 8 ∨ 𝑁 = 8 ) → ( ( ( ( ( ( 𝑁 = 2 ∨ 𝑁 = 3 ) ∨ 𝑁 = 4 ) ∨ 𝑁 = 5 ) ∨ 𝑁 = 6 ) ∨ 𝑁 = 7 ) ∨ 𝑁 = 8 ) ) ) |
101 |
4 100
|
sylbid |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → ( 𝑁 ≤ 8 → ( ( ( ( ( ( 𝑁 = 2 ∨ 𝑁 = 3 ) ∨ 𝑁 = 4 ) ∨ 𝑁 = 5 ) ∨ 𝑁 = 6 ) ∨ 𝑁 = 7 ) ∨ 𝑁 = 8 ) ) ) |
102 |
101
|
imp |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑁 ≤ 8 ) → ( ( ( ( ( ( 𝑁 = 2 ∨ 𝑁 = 3 ) ∨ 𝑁 = 4 ) ∨ 𝑁 = 5 ) ∨ 𝑁 = 6 ) ∨ 𝑁 = 7 ) ∨ 𝑁 = 8 ) ) |
103 |
|
2prm |
⊢ 2 ∈ ℙ |
104 |
|
eleq1 |
⊢ ( 𝑁 = 2 → ( 𝑁 ∈ ℙ ↔ 2 ∈ ℙ ) ) |
105 |
103 104
|
mpbiri |
⊢ ( 𝑁 = 2 → 𝑁 ∈ ℙ ) |
106 |
|
nnsum3primesprm |
⊢ ( 𝑁 ∈ ℙ → ∃ 𝑑 ∈ ℕ ∃ 𝑓 ∈ ( ℙ ↑m ( 1 ... 𝑑 ) ) ( 𝑑 ≤ 3 ∧ 𝑁 = Σ 𝑘 ∈ ( 1 ... 𝑑 ) ( 𝑓 ‘ 𝑘 ) ) ) |
107 |
105 106
|
syl |
⊢ ( 𝑁 = 2 → ∃ 𝑑 ∈ ℕ ∃ 𝑓 ∈ ( ℙ ↑m ( 1 ... 𝑑 ) ) ( 𝑑 ≤ 3 ∧ 𝑁 = Σ 𝑘 ∈ ( 1 ... 𝑑 ) ( 𝑓 ‘ 𝑘 ) ) ) |
108 |
|
3prm |
⊢ 3 ∈ ℙ |
109 |
|
eleq1 |
⊢ ( 𝑁 = 3 → ( 𝑁 ∈ ℙ ↔ 3 ∈ ℙ ) ) |
110 |
108 109
|
mpbiri |
⊢ ( 𝑁 = 3 → 𝑁 ∈ ℙ ) |
111 |
110 106
|
syl |
⊢ ( 𝑁 = 3 → ∃ 𝑑 ∈ ℕ ∃ 𝑓 ∈ ( ℙ ↑m ( 1 ... 𝑑 ) ) ( 𝑑 ≤ 3 ∧ 𝑁 = Σ 𝑘 ∈ ( 1 ... 𝑑 ) ( 𝑓 ‘ 𝑘 ) ) ) |
112 |
107 111
|
jaoi |
⊢ ( ( 𝑁 = 2 ∨ 𝑁 = 3 ) → ∃ 𝑑 ∈ ℕ ∃ 𝑓 ∈ ( ℙ ↑m ( 1 ... 𝑑 ) ) ( 𝑑 ≤ 3 ∧ 𝑁 = Σ 𝑘 ∈ ( 1 ... 𝑑 ) ( 𝑓 ‘ 𝑘 ) ) ) |
113 |
|
nnsum3primes4 |
⊢ ∃ 𝑑 ∈ ℕ ∃ 𝑓 ∈ ( ℙ ↑m ( 1 ... 𝑑 ) ) ( 𝑑 ≤ 3 ∧ 4 = Σ 𝑘 ∈ ( 1 ... 𝑑 ) ( 𝑓 ‘ 𝑘 ) ) |
114 |
|
eqeq1 |
⊢ ( 𝑁 = 4 → ( 𝑁 = Σ 𝑘 ∈ ( 1 ... 𝑑 ) ( 𝑓 ‘ 𝑘 ) ↔ 4 = Σ 𝑘 ∈ ( 1 ... 𝑑 ) ( 𝑓 ‘ 𝑘 ) ) ) |
115 |
114
|
anbi2d |
⊢ ( 𝑁 = 4 → ( ( 𝑑 ≤ 3 ∧ 𝑁 = Σ 𝑘 ∈ ( 1 ... 𝑑 ) ( 𝑓 ‘ 𝑘 ) ) ↔ ( 𝑑 ≤ 3 ∧ 4 = Σ 𝑘 ∈ ( 1 ... 𝑑 ) ( 𝑓 ‘ 𝑘 ) ) ) ) |
116 |
115
|
2rexbidv |
⊢ ( 𝑁 = 4 → ( ∃ 𝑑 ∈ ℕ ∃ 𝑓 ∈ ( ℙ ↑m ( 1 ... 𝑑 ) ) ( 𝑑 ≤ 3 ∧ 𝑁 = Σ 𝑘 ∈ ( 1 ... 𝑑 ) ( 𝑓 ‘ 𝑘 ) ) ↔ ∃ 𝑑 ∈ ℕ ∃ 𝑓 ∈ ( ℙ ↑m ( 1 ... 𝑑 ) ) ( 𝑑 ≤ 3 ∧ 4 = Σ 𝑘 ∈ ( 1 ... 𝑑 ) ( 𝑓 ‘ 𝑘 ) ) ) ) |
117 |
113 116
|
mpbiri |
⊢ ( 𝑁 = 4 → ∃ 𝑑 ∈ ℕ ∃ 𝑓 ∈ ( ℙ ↑m ( 1 ... 𝑑 ) ) ( 𝑑 ≤ 3 ∧ 𝑁 = Σ 𝑘 ∈ ( 1 ... 𝑑 ) ( 𝑓 ‘ 𝑘 ) ) ) |
118 |
112 117
|
jaoi |
⊢ ( ( ( 𝑁 = 2 ∨ 𝑁 = 3 ) ∨ 𝑁 = 4 ) → ∃ 𝑑 ∈ ℕ ∃ 𝑓 ∈ ( ℙ ↑m ( 1 ... 𝑑 ) ) ( 𝑑 ≤ 3 ∧ 𝑁 = Σ 𝑘 ∈ ( 1 ... 𝑑 ) ( 𝑓 ‘ 𝑘 ) ) ) |
119 |
|
5prm |
⊢ 5 ∈ ℙ |
120 |
|
eleq1 |
⊢ ( 𝑁 = 5 → ( 𝑁 ∈ ℙ ↔ 5 ∈ ℙ ) ) |
121 |
119 120
|
mpbiri |
⊢ ( 𝑁 = 5 → 𝑁 ∈ ℙ ) |
122 |
121 106
|
syl |
⊢ ( 𝑁 = 5 → ∃ 𝑑 ∈ ℕ ∃ 𝑓 ∈ ( ℙ ↑m ( 1 ... 𝑑 ) ) ( 𝑑 ≤ 3 ∧ 𝑁 = Σ 𝑘 ∈ ( 1 ... 𝑑 ) ( 𝑓 ‘ 𝑘 ) ) ) |
123 |
118 122
|
jaoi |
⊢ ( ( ( ( 𝑁 = 2 ∨ 𝑁 = 3 ) ∨ 𝑁 = 4 ) ∨ 𝑁 = 5 ) → ∃ 𝑑 ∈ ℕ ∃ 𝑓 ∈ ( ℙ ↑m ( 1 ... 𝑑 ) ) ( 𝑑 ≤ 3 ∧ 𝑁 = Σ 𝑘 ∈ ( 1 ... 𝑑 ) ( 𝑓 ‘ 𝑘 ) ) ) |
124 |
|
6gbe |
⊢ 6 ∈ GoldbachEven |
125 |
|
eleq1 |
⊢ ( 𝑁 = 6 → ( 𝑁 ∈ GoldbachEven ↔ 6 ∈ GoldbachEven ) ) |
126 |
124 125
|
mpbiri |
⊢ ( 𝑁 = 6 → 𝑁 ∈ GoldbachEven ) |
127 |
|
nnsum3primesgbe |
⊢ ( 𝑁 ∈ GoldbachEven → ∃ 𝑑 ∈ ℕ ∃ 𝑓 ∈ ( ℙ ↑m ( 1 ... 𝑑 ) ) ( 𝑑 ≤ 3 ∧ 𝑁 = Σ 𝑘 ∈ ( 1 ... 𝑑 ) ( 𝑓 ‘ 𝑘 ) ) ) |
128 |
126 127
|
syl |
⊢ ( 𝑁 = 6 → ∃ 𝑑 ∈ ℕ ∃ 𝑓 ∈ ( ℙ ↑m ( 1 ... 𝑑 ) ) ( 𝑑 ≤ 3 ∧ 𝑁 = Σ 𝑘 ∈ ( 1 ... 𝑑 ) ( 𝑓 ‘ 𝑘 ) ) ) |
129 |
123 128
|
jaoi |
⊢ ( ( ( ( ( 𝑁 = 2 ∨ 𝑁 = 3 ) ∨ 𝑁 = 4 ) ∨ 𝑁 = 5 ) ∨ 𝑁 = 6 ) → ∃ 𝑑 ∈ ℕ ∃ 𝑓 ∈ ( ℙ ↑m ( 1 ... 𝑑 ) ) ( 𝑑 ≤ 3 ∧ 𝑁 = Σ 𝑘 ∈ ( 1 ... 𝑑 ) ( 𝑓 ‘ 𝑘 ) ) ) |
130 |
|
7prm |
⊢ 7 ∈ ℙ |
131 |
|
eleq1 |
⊢ ( 𝑁 = 7 → ( 𝑁 ∈ ℙ ↔ 7 ∈ ℙ ) ) |
132 |
130 131
|
mpbiri |
⊢ ( 𝑁 = 7 → 𝑁 ∈ ℙ ) |
133 |
132 106
|
syl |
⊢ ( 𝑁 = 7 → ∃ 𝑑 ∈ ℕ ∃ 𝑓 ∈ ( ℙ ↑m ( 1 ... 𝑑 ) ) ( 𝑑 ≤ 3 ∧ 𝑁 = Σ 𝑘 ∈ ( 1 ... 𝑑 ) ( 𝑓 ‘ 𝑘 ) ) ) |
134 |
129 133
|
jaoi |
⊢ ( ( ( ( ( ( 𝑁 = 2 ∨ 𝑁 = 3 ) ∨ 𝑁 = 4 ) ∨ 𝑁 = 5 ) ∨ 𝑁 = 6 ) ∨ 𝑁 = 7 ) → ∃ 𝑑 ∈ ℕ ∃ 𝑓 ∈ ( ℙ ↑m ( 1 ... 𝑑 ) ) ( 𝑑 ≤ 3 ∧ 𝑁 = Σ 𝑘 ∈ ( 1 ... 𝑑 ) ( 𝑓 ‘ 𝑘 ) ) ) |
135 |
|
8gbe |
⊢ 8 ∈ GoldbachEven |
136 |
|
eleq1 |
⊢ ( 𝑁 = 8 → ( 𝑁 ∈ GoldbachEven ↔ 8 ∈ GoldbachEven ) ) |
137 |
135 136
|
mpbiri |
⊢ ( 𝑁 = 8 → 𝑁 ∈ GoldbachEven ) |
138 |
137 127
|
syl |
⊢ ( 𝑁 = 8 → ∃ 𝑑 ∈ ℕ ∃ 𝑓 ∈ ( ℙ ↑m ( 1 ... 𝑑 ) ) ( 𝑑 ≤ 3 ∧ 𝑁 = Σ 𝑘 ∈ ( 1 ... 𝑑 ) ( 𝑓 ‘ 𝑘 ) ) ) |
139 |
134 138
|
jaoi |
⊢ ( ( ( ( ( ( ( 𝑁 = 2 ∨ 𝑁 = 3 ) ∨ 𝑁 = 4 ) ∨ 𝑁 = 5 ) ∨ 𝑁 = 6 ) ∨ 𝑁 = 7 ) ∨ 𝑁 = 8 ) → ∃ 𝑑 ∈ ℕ ∃ 𝑓 ∈ ( ℙ ↑m ( 1 ... 𝑑 ) ) ( 𝑑 ≤ 3 ∧ 𝑁 = Σ 𝑘 ∈ ( 1 ... 𝑑 ) ( 𝑓 ‘ 𝑘 ) ) ) |
140 |
102 139
|
syl |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑁 ≤ 8 ) → ∃ 𝑑 ∈ ℕ ∃ 𝑓 ∈ ( ℙ ↑m ( 1 ... 𝑑 ) ) ( 𝑑 ≤ 3 ∧ 𝑁 = Σ 𝑘 ∈ ( 1 ... 𝑑 ) ( 𝑓 ‘ 𝑘 ) ) ) |