Step |
Hyp |
Ref |
Expression |
1 |
|
eluzelre |
|- ( N e. ( ZZ>= ` 2 ) -> N e. RR ) |
2 |
|
8re |
|- 8 e. RR |
3 |
2
|
a1i |
|- ( N e. ( ZZ>= ` 2 ) -> 8 e. RR ) |
4 |
1 3
|
leloed |
|- ( N e. ( ZZ>= ` 2 ) -> ( N <_ 8 <-> ( N < 8 \/ N = 8 ) ) ) |
5 |
|
eluzelz |
|- ( N e. ( ZZ>= ` 2 ) -> N e. ZZ ) |
6 |
|
7nn |
|- 7 e. NN |
7 |
6
|
nnzi |
|- 7 e. ZZ |
8 |
|
zleltp1 |
|- ( ( N e. ZZ /\ 7 e. ZZ ) -> ( N <_ 7 <-> N < ( 7 + 1 ) ) ) |
9 |
5 7 8
|
sylancl |
|- ( N e. ( ZZ>= ` 2 ) -> ( N <_ 7 <-> N < ( 7 + 1 ) ) ) |
10 |
|
7re |
|- 7 e. RR |
11 |
10
|
a1i |
|- ( N e. ( ZZ>= ` 2 ) -> 7 e. RR ) |
12 |
1 11
|
leloed |
|- ( N e. ( ZZ>= ` 2 ) -> ( N <_ 7 <-> ( N < 7 \/ N = 7 ) ) ) |
13 |
|
7p1e8 |
|- ( 7 + 1 ) = 8 |
14 |
13
|
breq2i |
|- ( N < ( 7 + 1 ) <-> N < 8 ) |
15 |
14
|
a1i |
|- ( N e. ( ZZ>= ` 2 ) -> ( N < ( 7 + 1 ) <-> N < 8 ) ) |
16 |
9 12 15
|
3bitr3rd |
|- ( N e. ( ZZ>= ` 2 ) -> ( N < 8 <-> ( N < 7 \/ N = 7 ) ) ) |
17 |
|
6nn |
|- 6 e. NN |
18 |
17
|
nnzi |
|- 6 e. ZZ |
19 |
|
zleltp1 |
|- ( ( N e. ZZ /\ 6 e. ZZ ) -> ( N <_ 6 <-> N < ( 6 + 1 ) ) ) |
20 |
5 18 19
|
sylancl |
|- ( N e. ( ZZ>= ` 2 ) -> ( N <_ 6 <-> N < ( 6 + 1 ) ) ) |
21 |
|
6re |
|- 6 e. RR |
22 |
21
|
a1i |
|- ( N e. ( ZZ>= ` 2 ) -> 6 e. RR ) |
23 |
1 22
|
leloed |
|- ( N e. ( ZZ>= ` 2 ) -> ( N <_ 6 <-> ( N < 6 \/ N = 6 ) ) ) |
24 |
|
6p1e7 |
|- ( 6 + 1 ) = 7 |
25 |
24
|
breq2i |
|- ( N < ( 6 + 1 ) <-> N < 7 ) |
26 |
25
|
a1i |
|- ( N e. ( ZZ>= ` 2 ) -> ( N < ( 6 + 1 ) <-> N < 7 ) ) |
27 |
20 23 26
|
3bitr3rd |
|- ( N e. ( ZZ>= ` 2 ) -> ( N < 7 <-> ( N < 6 \/ N = 6 ) ) ) |
28 |
|
5nn |
|- 5 e. NN |
29 |
28
|
nnzi |
|- 5 e. ZZ |
30 |
|
zleltp1 |
|- ( ( N e. ZZ /\ 5 e. ZZ ) -> ( N <_ 5 <-> N < ( 5 + 1 ) ) ) |
31 |
5 29 30
|
sylancl |
|- ( N e. ( ZZ>= ` 2 ) -> ( N <_ 5 <-> N < ( 5 + 1 ) ) ) |
32 |
|
5re |
|- 5 e. RR |
33 |
32
|
a1i |
|- ( N e. ( ZZ>= ` 2 ) -> 5 e. RR ) |
34 |
1 33
|
leloed |
|- ( N e. ( ZZ>= ` 2 ) -> ( N <_ 5 <-> ( N < 5 \/ N = 5 ) ) ) |
35 |
|
5p1e6 |
|- ( 5 + 1 ) = 6 |
36 |
35
|
breq2i |
|- ( N < ( 5 + 1 ) <-> N < 6 ) |
37 |
36
|
a1i |
|- ( N e. ( ZZ>= ` 2 ) -> ( N < ( 5 + 1 ) <-> N < 6 ) ) |
38 |
31 34 37
|
3bitr3rd |
|- ( N e. ( ZZ>= ` 2 ) -> ( N < 6 <-> ( N < 5 \/ N = 5 ) ) ) |
39 |
|
4z |
|- 4 e. ZZ |
40 |
|
zleltp1 |
|- ( ( N e. ZZ /\ 4 e. ZZ ) -> ( N <_ 4 <-> N < ( 4 + 1 ) ) ) |
41 |
5 39 40
|
sylancl |
|- ( N e. ( ZZ>= ` 2 ) -> ( N <_ 4 <-> N < ( 4 + 1 ) ) ) |
42 |
|
4re |
|- 4 e. RR |
43 |
42
|
a1i |
|- ( N e. ( ZZ>= ` 2 ) -> 4 e. RR ) |
44 |
1 43
|
leloed |
|- ( N e. ( ZZ>= ` 2 ) -> ( N <_ 4 <-> ( N < 4 \/ N = 4 ) ) ) |
45 |
|
4p1e5 |
|- ( 4 + 1 ) = 5 |
46 |
45
|
breq2i |
|- ( N < ( 4 + 1 ) <-> N < 5 ) |
47 |
46
|
a1i |
|- ( N e. ( ZZ>= ` 2 ) -> ( N < ( 4 + 1 ) <-> N < 5 ) ) |
48 |
41 44 47
|
3bitr3rd |
|- ( N e. ( ZZ>= ` 2 ) -> ( N < 5 <-> ( N < 4 \/ N = 4 ) ) ) |
49 |
|
3z |
|- 3 e. ZZ |
50 |
|
zleltp1 |
|- ( ( N e. ZZ /\ 3 e. ZZ ) -> ( N <_ 3 <-> N < ( 3 + 1 ) ) ) |
51 |
5 49 50
|
sylancl |
|- ( N e. ( ZZ>= ` 2 ) -> ( N <_ 3 <-> N < ( 3 + 1 ) ) ) |
52 |
|
3re |
|- 3 e. RR |
53 |
52
|
a1i |
|- ( N e. ( ZZ>= ` 2 ) -> 3 e. RR ) |
54 |
1 53
|
leloed |
|- ( N e. ( ZZ>= ` 2 ) -> ( N <_ 3 <-> ( N < 3 \/ N = 3 ) ) ) |
55 |
|
3p1e4 |
|- ( 3 + 1 ) = 4 |
56 |
55
|
breq2i |
|- ( N < ( 3 + 1 ) <-> N < 4 ) |
57 |
56
|
a1i |
|- ( N e. ( ZZ>= ` 2 ) -> ( N < ( 3 + 1 ) <-> N < 4 ) ) |
58 |
51 54 57
|
3bitr3rd |
|- ( N e. ( ZZ>= ` 2 ) -> ( N < 4 <-> ( N < 3 \/ N = 3 ) ) ) |
59 |
|
eluz2 |
|- ( N e. ( ZZ>= ` 2 ) <-> ( 2 e. ZZ /\ N e. ZZ /\ 2 <_ N ) ) |
60 |
|
2re |
|- 2 e. RR |
61 |
60
|
a1i |
|- ( N e. ZZ -> 2 e. RR ) |
62 |
|
zre |
|- ( N e. ZZ -> N e. RR ) |
63 |
61 62
|
leloed |
|- ( N e. ZZ -> ( 2 <_ N <-> ( 2 < N \/ 2 = N ) ) ) |
64 |
|
3m1e2 |
|- ( 3 - 1 ) = 2 |
65 |
64
|
eqcomi |
|- 2 = ( 3 - 1 ) |
66 |
65
|
breq1i |
|- ( 2 < N <-> ( 3 - 1 ) < N ) |
67 |
|
zlem1lt |
|- ( ( 3 e. ZZ /\ N e. ZZ ) -> ( 3 <_ N <-> ( 3 - 1 ) < N ) ) |
68 |
49 67
|
mpan |
|- ( N e. ZZ -> ( 3 <_ N <-> ( 3 - 1 ) < N ) ) |
69 |
68
|
biimprd |
|- ( N e. ZZ -> ( ( 3 - 1 ) < N -> 3 <_ N ) ) |
70 |
66 69
|
syl5bi |
|- ( N e. ZZ -> ( 2 < N -> 3 <_ N ) ) |
71 |
52
|
a1i |
|- ( N e. ZZ -> 3 e. RR ) |
72 |
71 62
|
lenltd |
|- ( N e. ZZ -> ( 3 <_ N <-> -. N < 3 ) ) |
73 |
|
pm2.21 |
|- ( -. N < 3 -> ( N < 3 -> N = 2 ) ) |
74 |
72 73
|
syl6bi |
|- ( N e. ZZ -> ( 3 <_ N -> ( N < 3 -> N = 2 ) ) ) |
75 |
70 74
|
syldc |
|- ( 2 < N -> ( N e. ZZ -> ( N < 3 -> N = 2 ) ) ) |
76 |
|
eqcom |
|- ( 2 = N <-> N = 2 ) |
77 |
76
|
biimpi |
|- ( 2 = N -> N = 2 ) |
78 |
77
|
2a1d |
|- ( 2 = N -> ( N e. ZZ -> ( N < 3 -> N = 2 ) ) ) |
79 |
75 78
|
jaoi |
|- ( ( 2 < N \/ 2 = N ) -> ( N e. ZZ -> ( N < 3 -> N = 2 ) ) ) |
80 |
79
|
com12 |
|- ( N e. ZZ -> ( ( 2 < N \/ 2 = N ) -> ( N < 3 -> N = 2 ) ) ) |
81 |
63 80
|
sylbid |
|- ( N e. ZZ -> ( 2 <_ N -> ( N < 3 -> N = 2 ) ) ) |
82 |
81
|
imp |
|- ( ( N e. ZZ /\ 2 <_ N ) -> ( N < 3 -> N = 2 ) ) |
83 |
|
2lt3 |
|- 2 < 3 |
84 |
|
breq1 |
|- ( N = 2 -> ( N < 3 <-> 2 < 3 ) ) |
85 |
83 84
|
mpbiri |
|- ( N = 2 -> N < 3 ) |
86 |
82 85
|
impbid1 |
|- ( ( N e. ZZ /\ 2 <_ N ) -> ( N < 3 <-> N = 2 ) ) |
87 |
86
|
3adant1 |
|- ( ( 2 e. ZZ /\ N e. ZZ /\ 2 <_ N ) -> ( N < 3 <-> N = 2 ) ) |
88 |
59 87
|
sylbi |
|- ( N e. ( ZZ>= ` 2 ) -> ( N < 3 <-> N = 2 ) ) |
89 |
88
|
orbi1d |
|- ( N e. ( ZZ>= ` 2 ) -> ( ( N < 3 \/ N = 3 ) <-> ( N = 2 \/ N = 3 ) ) ) |
90 |
58 89
|
bitrd |
|- ( N e. ( ZZ>= ` 2 ) -> ( N < 4 <-> ( N = 2 \/ N = 3 ) ) ) |
91 |
90
|
orbi1d |
|- ( N e. ( ZZ>= ` 2 ) -> ( ( N < 4 \/ N = 4 ) <-> ( ( N = 2 \/ N = 3 ) \/ N = 4 ) ) ) |
92 |
48 91
|
bitrd |
|- ( N e. ( ZZ>= ` 2 ) -> ( N < 5 <-> ( ( N = 2 \/ N = 3 ) \/ N = 4 ) ) ) |
93 |
92
|
orbi1d |
|- ( N e. ( ZZ>= ` 2 ) -> ( ( N < 5 \/ N = 5 ) <-> ( ( ( N = 2 \/ N = 3 ) \/ N = 4 ) \/ N = 5 ) ) ) |
94 |
38 93
|
bitrd |
|- ( N e. ( ZZ>= ` 2 ) -> ( N < 6 <-> ( ( ( N = 2 \/ N = 3 ) \/ N = 4 ) \/ N = 5 ) ) ) |
95 |
94
|
orbi1d |
|- ( N e. ( ZZ>= ` 2 ) -> ( ( N < 6 \/ N = 6 ) <-> ( ( ( ( N = 2 \/ N = 3 ) \/ N = 4 ) \/ N = 5 ) \/ N = 6 ) ) ) |
96 |
27 95
|
bitrd |
|- ( N e. ( ZZ>= ` 2 ) -> ( N < 7 <-> ( ( ( ( N = 2 \/ N = 3 ) \/ N = 4 ) \/ N = 5 ) \/ N = 6 ) ) ) |
97 |
96
|
orbi1d |
|- ( N e. ( ZZ>= ` 2 ) -> ( ( N < 7 \/ N = 7 ) <-> ( ( ( ( ( N = 2 \/ N = 3 ) \/ N = 4 ) \/ N = 5 ) \/ N = 6 ) \/ N = 7 ) ) ) |
98 |
16 97
|
bitrd |
|- ( N e. ( ZZ>= ` 2 ) -> ( N < 8 <-> ( ( ( ( ( N = 2 \/ N = 3 ) \/ N = 4 ) \/ N = 5 ) \/ N = 6 ) \/ N = 7 ) ) ) |
99 |
98
|
orbi1d |
|- ( N e. ( ZZ>= ` 2 ) -> ( ( N < 8 \/ N = 8 ) <-> ( ( ( ( ( ( N = 2 \/ N = 3 ) \/ N = 4 ) \/ N = 5 ) \/ N = 6 ) \/ N = 7 ) \/ N = 8 ) ) ) |
100 |
99
|
biimpd |
|- ( N e. ( ZZ>= ` 2 ) -> ( ( N < 8 \/ N = 8 ) -> ( ( ( ( ( ( N = 2 \/ N = 3 ) \/ N = 4 ) \/ N = 5 ) \/ N = 6 ) \/ N = 7 ) \/ N = 8 ) ) ) |
101 |
4 100
|
sylbid |
|- ( N e. ( ZZ>= ` 2 ) -> ( N <_ 8 -> ( ( ( ( ( ( N = 2 \/ N = 3 ) \/ N = 4 ) \/ N = 5 ) \/ N = 6 ) \/ N = 7 ) \/ N = 8 ) ) ) |
102 |
101
|
imp |
|- ( ( N e. ( ZZ>= ` 2 ) /\ N <_ 8 ) -> ( ( ( ( ( ( N = 2 \/ N = 3 ) \/ N = 4 ) \/ N = 5 ) \/ N = 6 ) \/ N = 7 ) \/ N = 8 ) ) |
103 |
|
2prm |
|- 2 e. Prime |
104 |
|
eleq1 |
|- ( N = 2 -> ( N e. Prime <-> 2 e. Prime ) ) |
105 |
103 104
|
mpbiri |
|- ( N = 2 -> N e. Prime ) |
106 |
|
nnsum3primesprm |
|- ( N e. Prime -> E. d e. NN E. f e. ( Prime ^m ( 1 ... d ) ) ( d <_ 3 /\ N = sum_ k e. ( 1 ... d ) ( f ` k ) ) ) |
107 |
105 106
|
syl |
|- ( N = 2 -> E. d e. NN E. f e. ( Prime ^m ( 1 ... d ) ) ( d <_ 3 /\ N = sum_ k e. ( 1 ... d ) ( f ` k ) ) ) |
108 |
|
3prm |
|- 3 e. Prime |
109 |
|
eleq1 |
|- ( N = 3 -> ( N e. Prime <-> 3 e. Prime ) ) |
110 |
108 109
|
mpbiri |
|- ( N = 3 -> N e. Prime ) |
111 |
110 106
|
syl |
|- ( N = 3 -> E. d e. NN E. f e. ( Prime ^m ( 1 ... d ) ) ( d <_ 3 /\ N = sum_ k e. ( 1 ... d ) ( f ` k ) ) ) |
112 |
107 111
|
jaoi |
|- ( ( N = 2 \/ N = 3 ) -> E. d e. NN E. f e. ( Prime ^m ( 1 ... d ) ) ( d <_ 3 /\ N = sum_ k e. ( 1 ... d ) ( f ` k ) ) ) |
113 |
|
nnsum3primes4 |
|- E. d e. NN E. f e. ( Prime ^m ( 1 ... d ) ) ( d <_ 3 /\ 4 = sum_ k e. ( 1 ... d ) ( f ` k ) ) |
114 |
|
eqeq1 |
|- ( N = 4 -> ( N = sum_ k e. ( 1 ... d ) ( f ` k ) <-> 4 = sum_ k e. ( 1 ... d ) ( f ` k ) ) ) |
115 |
114
|
anbi2d |
|- ( N = 4 -> ( ( d <_ 3 /\ N = sum_ k e. ( 1 ... d ) ( f ` k ) ) <-> ( d <_ 3 /\ 4 = sum_ k e. ( 1 ... d ) ( f ` k ) ) ) ) |
116 |
115
|
2rexbidv |
|- ( N = 4 -> ( E. d e. NN E. f e. ( Prime ^m ( 1 ... d ) ) ( d <_ 3 /\ N = sum_ k e. ( 1 ... d ) ( f ` k ) ) <-> E. d e. NN E. f e. ( Prime ^m ( 1 ... d ) ) ( d <_ 3 /\ 4 = sum_ k e. ( 1 ... d ) ( f ` k ) ) ) ) |
117 |
113 116
|
mpbiri |
|- ( N = 4 -> E. d e. NN E. f e. ( Prime ^m ( 1 ... d ) ) ( d <_ 3 /\ N = sum_ k e. ( 1 ... d ) ( f ` k ) ) ) |
118 |
112 117
|
jaoi |
|- ( ( ( N = 2 \/ N = 3 ) \/ N = 4 ) -> E. d e. NN E. f e. ( Prime ^m ( 1 ... d ) ) ( d <_ 3 /\ N = sum_ k e. ( 1 ... d ) ( f ` k ) ) ) |
119 |
|
5prm |
|- 5 e. Prime |
120 |
|
eleq1 |
|- ( N = 5 -> ( N e. Prime <-> 5 e. Prime ) ) |
121 |
119 120
|
mpbiri |
|- ( N = 5 -> N e. Prime ) |
122 |
121 106
|
syl |
|- ( N = 5 -> E. d e. NN E. f e. ( Prime ^m ( 1 ... d ) ) ( d <_ 3 /\ N = sum_ k e. ( 1 ... d ) ( f ` k ) ) ) |
123 |
118 122
|
jaoi |
|- ( ( ( ( N = 2 \/ N = 3 ) \/ N = 4 ) \/ N = 5 ) -> E. d e. NN E. f e. ( Prime ^m ( 1 ... d ) ) ( d <_ 3 /\ N = sum_ k e. ( 1 ... d ) ( f ` k ) ) ) |
124 |
|
6gbe |
|- 6 e. GoldbachEven |
125 |
|
eleq1 |
|- ( N = 6 -> ( N e. GoldbachEven <-> 6 e. GoldbachEven ) ) |
126 |
124 125
|
mpbiri |
|- ( N = 6 -> N e. GoldbachEven ) |
127 |
|
nnsum3primesgbe |
|- ( N e. GoldbachEven -> E. d e. NN E. f e. ( Prime ^m ( 1 ... d ) ) ( d <_ 3 /\ N = sum_ k e. ( 1 ... d ) ( f ` k ) ) ) |
128 |
126 127
|
syl |
|- ( N = 6 -> E. d e. NN E. f e. ( Prime ^m ( 1 ... d ) ) ( d <_ 3 /\ N = sum_ k e. ( 1 ... d ) ( f ` k ) ) ) |
129 |
123 128
|
jaoi |
|- ( ( ( ( ( N = 2 \/ N = 3 ) \/ N = 4 ) \/ N = 5 ) \/ N = 6 ) -> E. d e. NN E. f e. ( Prime ^m ( 1 ... d ) ) ( d <_ 3 /\ N = sum_ k e. ( 1 ... d ) ( f ` k ) ) ) |
130 |
|
7prm |
|- 7 e. Prime |
131 |
|
eleq1 |
|- ( N = 7 -> ( N e. Prime <-> 7 e. Prime ) ) |
132 |
130 131
|
mpbiri |
|- ( N = 7 -> N e. Prime ) |
133 |
132 106
|
syl |
|- ( N = 7 -> E. d e. NN E. f e. ( Prime ^m ( 1 ... d ) ) ( d <_ 3 /\ N = sum_ k e. ( 1 ... d ) ( f ` k ) ) ) |
134 |
129 133
|
jaoi |
|- ( ( ( ( ( ( N = 2 \/ N = 3 ) \/ N = 4 ) \/ N = 5 ) \/ N = 6 ) \/ N = 7 ) -> E. d e. NN E. f e. ( Prime ^m ( 1 ... d ) ) ( d <_ 3 /\ N = sum_ k e. ( 1 ... d ) ( f ` k ) ) ) |
135 |
|
8gbe |
|- 8 e. GoldbachEven |
136 |
|
eleq1 |
|- ( N = 8 -> ( N e. GoldbachEven <-> 8 e. GoldbachEven ) ) |
137 |
135 136
|
mpbiri |
|- ( N = 8 -> N e. GoldbachEven ) |
138 |
137 127
|
syl |
|- ( N = 8 -> E. d e. NN E. f e. ( Prime ^m ( 1 ... d ) ) ( d <_ 3 /\ N = sum_ k e. ( 1 ... d ) ( f ` k ) ) ) |
139 |
134 138
|
jaoi |
|- ( ( ( ( ( ( ( N = 2 \/ N = 3 ) \/ N = 4 ) \/ N = 5 ) \/ N = 6 ) \/ N = 7 ) \/ N = 8 ) -> E. d e. NN E. f e. ( Prime ^m ( 1 ... d ) ) ( d <_ 3 /\ N = sum_ k e. ( 1 ... d ) ( f ` k ) ) ) |
140 |
102 139
|
syl |
|- ( ( N e. ( ZZ>= ` 2 ) /\ N <_ 8 ) -> E. d e. NN E. f e. ( Prime ^m ( 1 ... d ) ) ( d <_ 3 /\ N = sum_ k e. ( 1 ... d ) ( f ` k ) ) ) |