| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 1nn |  |-  1 e. NN | 
						
							| 2 |  | 1zzd |  |-  ( P e. Prime -> 1 e. ZZ ) | 
						
							| 3 |  | id |  |-  ( P e. Prime -> P e. Prime ) | 
						
							| 4 | 2 3 | fsnd |  |-  ( P e. Prime -> { <. 1 , P >. } : { 1 } --> Prime ) | 
						
							| 5 |  | prmex |  |-  Prime e. _V | 
						
							| 6 |  | snex |  |-  { 1 } e. _V | 
						
							| 7 | 5 6 | elmap |  |-  ( { <. 1 , P >. } e. ( Prime ^m { 1 } ) <-> { <. 1 , P >. } : { 1 } --> Prime ) | 
						
							| 8 | 4 7 | sylibr |  |-  ( P e. Prime -> { <. 1 , P >. } e. ( Prime ^m { 1 } ) ) | 
						
							| 9 |  | 1re |  |-  1 e. RR | 
						
							| 10 |  | simpl |  |-  ( ( P e. Prime /\ k e. { 1 } ) -> P e. Prime ) | 
						
							| 11 |  | fvsng |  |-  ( ( 1 e. RR /\ P e. Prime ) -> ( { <. 1 , P >. } ` 1 ) = P ) | 
						
							| 12 | 9 10 11 | sylancr |  |-  ( ( P e. Prime /\ k e. { 1 } ) -> ( { <. 1 , P >. } ` 1 ) = P ) | 
						
							| 13 | 12 | sumeq2dv |  |-  ( P e. Prime -> sum_ k e. { 1 } ( { <. 1 , P >. } ` 1 ) = sum_ k e. { 1 } P ) | 
						
							| 14 |  | prmz |  |-  ( P e. Prime -> P e. ZZ ) | 
						
							| 15 | 14 | zcnd |  |-  ( P e. Prime -> P e. CC ) | 
						
							| 16 |  | eqidd |  |-  ( k = 1 -> P = P ) | 
						
							| 17 | 16 | sumsn |  |-  ( ( 1 e. RR /\ P e. CC ) -> sum_ k e. { 1 } P = P ) | 
						
							| 18 | 9 15 17 | sylancr |  |-  ( P e. Prime -> sum_ k e. { 1 } P = P ) | 
						
							| 19 | 13 18 | eqtr2d |  |-  ( P e. Prime -> P = sum_ k e. { 1 } ( { <. 1 , P >. } ` 1 ) ) | 
						
							| 20 |  | 1le3 |  |-  1 <_ 3 | 
						
							| 21 | 19 20 | jctil |  |-  ( P e. Prime -> ( 1 <_ 3 /\ P = sum_ k e. { 1 } ( { <. 1 , P >. } ` 1 ) ) ) | 
						
							| 22 |  | simpl |  |-  ( ( f = { <. 1 , P >. } /\ k e. { 1 } ) -> f = { <. 1 , P >. } ) | 
						
							| 23 |  | elsni |  |-  ( k e. { 1 } -> k = 1 ) | 
						
							| 24 | 23 | adantl |  |-  ( ( f = { <. 1 , P >. } /\ k e. { 1 } ) -> k = 1 ) | 
						
							| 25 | 22 24 | fveq12d |  |-  ( ( f = { <. 1 , P >. } /\ k e. { 1 } ) -> ( f ` k ) = ( { <. 1 , P >. } ` 1 ) ) | 
						
							| 26 | 25 | sumeq2dv |  |-  ( f = { <. 1 , P >. } -> sum_ k e. { 1 } ( f ` k ) = sum_ k e. { 1 } ( { <. 1 , P >. } ` 1 ) ) | 
						
							| 27 | 26 | eqeq2d |  |-  ( f = { <. 1 , P >. } -> ( P = sum_ k e. { 1 } ( f ` k ) <-> P = sum_ k e. { 1 } ( { <. 1 , P >. } ` 1 ) ) ) | 
						
							| 28 | 27 | anbi2d |  |-  ( f = { <. 1 , P >. } -> ( ( 1 <_ 3 /\ P = sum_ k e. { 1 } ( f ` k ) ) <-> ( 1 <_ 3 /\ P = sum_ k e. { 1 } ( { <. 1 , P >. } ` 1 ) ) ) ) | 
						
							| 29 | 28 | rspcev |  |-  ( ( { <. 1 , P >. } e. ( Prime ^m { 1 } ) /\ ( 1 <_ 3 /\ P = sum_ k e. { 1 } ( { <. 1 , P >. } ` 1 ) ) ) -> E. f e. ( Prime ^m { 1 } ) ( 1 <_ 3 /\ P = sum_ k e. { 1 } ( f ` k ) ) ) | 
						
							| 30 | 8 21 29 | syl2anc |  |-  ( P e. Prime -> E. f e. ( Prime ^m { 1 } ) ( 1 <_ 3 /\ P = sum_ k e. { 1 } ( f ` k ) ) ) | 
						
							| 31 |  | oveq2 |  |-  ( d = 1 -> ( 1 ... d ) = ( 1 ... 1 ) ) | 
						
							| 32 |  | 1z |  |-  1 e. ZZ | 
						
							| 33 |  | fzsn |  |-  ( 1 e. ZZ -> ( 1 ... 1 ) = { 1 } ) | 
						
							| 34 | 32 33 | ax-mp |  |-  ( 1 ... 1 ) = { 1 } | 
						
							| 35 | 31 34 | eqtrdi |  |-  ( d = 1 -> ( 1 ... d ) = { 1 } ) | 
						
							| 36 | 35 | oveq2d |  |-  ( d = 1 -> ( Prime ^m ( 1 ... d ) ) = ( Prime ^m { 1 } ) ) | 
						
							| 37 |  | breq1 |  |-  ( d = 1 -> ( d <_ 3 <-> 1 <_ 3 ) ) | 
						
							| 38 | 35 | sumeq1d |  |-  ( d = 1 -> sum_ k e. ( 1 ... d ) ( f ` k ) = sum_ k e. { 1 } ( f ` k ) ) | 
						
							| 39 | 38 | eqeq2d |  |-  ( d = 1 -> ( P = sum_ k e. ( 1 ... d ) ( f ` k ) <-> P = sum_ k e. { 1 } ( f ` k ) ) ) | 
						
							| 40 | 37 39 | anbi12d |  |-  ( d = 1 -> ( ( d <_ 3 /\ P = sum_ k e. ( 1 ... d ) ( f ` k ) ) <-> ( 1 <_ 3 /\ P = sum_ k e. { 1 } ( f ` k ) ) ) ) | 
						
							| 41 | 36 40 | rexeqbidv |  |-  ( d = 1 -> ( E. f e. ( Prime ^m ( 1 ... d ) ) ( d <_ 3 /\ P = sum_ k e. ( 1 ... d ) ( f ` k ) ) <-> E. f e. ( Prime ^m { 1 } ) ( 1 <_ 3 /\ P = sum_ k e. { 1 } ( f ` k ) ) ) ) | 
						
							| 42 | 41 | rspcev |  |-  ( ( 1 e. NN /\ E. f e. ( Prime ^m { 1 } ) ( 1 <_ 3 /\ P = sum_ k e. { 1 } ( f ` k ) ) ) -> E. d e. NN E. f e. ( Prime ^m ( 1 ... d ) ) ( d <_ 3 /\ P = sum_ k e. ( 1 ... d ) ( f ` k ) ) ) | 
						
							| 43 | 1 30 42 | sylancr |  |-  ( P e. Prime -> E. d e. NN E. f e. ( Prime ^m ( 1 ... d ) ) ( d <_ 3 /\ P = sum_ k e. ( 1 ... d ) ( f ` k ) ) ) |