| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 1nn | ⊢ 1  ∈  ℕ | 
						
							| 2 |  | 1zzd | ⊢ ( 𝑃  ∈  ℙ  →  1  ∈  ℤ ) | 
						
							| 3 |  | id | ⊢ ( 𝑃  ∈  ℙ  →  𝑃  ∈  ℙ ) | 
						
							| 4 | 2 3 | fsnd | ⊢ ( 𝑃  ∈  ℙ  →  { 〈 1 ,  𝑃 〉 } : { 1 } ⟶ ℙ ) | 
						
							| 5 |  | prmex | ⊢ ℙ  ∈  V | 
						
							| 6 |  | snex | ⊢ { 1 }  ∈  V | 
						
							| 7 | 5 6 | elmap | ⊢ ( { 〈 1 ,  𝑃 〉 }  ∈  ( ℙ  ↑m  { 1 } )  ↔  { 〈 1 ,  𝑃 〉 } : { 1 } ⟶ ℙ ) | 
						
							| 8 | 4 7 | sylibr | ⊢ ( 𝑃  ∈  ℙ  →  { 〈 1 ,  𝑃 〉 }  ∈  ( ℙ  ↑m  { 1 } ) ) | 
						
							| 9 |  | 1re | ⊢ 1  ∈  ℝ | 
						
							| 10 |  | simpl | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝑘  ∈  { 1 } )  →  𝑃  ∈  ℙ ) | 
						
							| 11 |  | fvsng | ⊢ ( ( 1  ∈  ℝ  ∧  𝑃  ∈  ℙ )  →  ( { 〈 1 ,  𝑃 〉 } ‘ 1 )  =  𝑃 ) | 
						
							| 12 | 9 10 11 | sylancr | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝑘  ∈  { 1 } )  →  ( { 〈 1 ,  𝑃 〉 } ‘ 1 )  =  𝑃 ) | 
						
							| 13 | 12 | sumeq2dv | ⊢ ( 𝑃  ∈  ℙ  →  Σ 𝑘  ∈  { 1 } ( { 〈 1 ,  𝑃 〉 } ‘ 1 )  =  Σ 𝑘  ∈  { 1 } 𝑃 ) | 
						
							| 14 |  | prmz | ⊢ ( 𝑃  ∈  ℙ  →  𝑃  ∈  ℤ ) | 
						
							| 15 | 14 | zcnd | ⊢ ( 𝑃  ∈  ℙ  →  𝑃  ∈  ℂ ) | 
						
							| 16 |  | eqidd | ⊢ ( 𝑘  =  1  →  𝑃  =  𝑃 ) | 
						
							| 17 | 16 | sumsn | ⊢ ( ( 1  ∈  ℝ  ∧  𝑃  ∈  ℂ )  →  Σ 𝑘  ∈  { 1 } 𝑃  =  𝑃 ) | 
						
							| 18 | 9 15 17 | sylancr | ⊢ ( 𝑃  ∈  ℙ  →  Σ 𝑘  ∈  { 1 } 𝑃  =  𝑃 ) | 
						
							| 19 | 13 18 | eqtr2d | ⊢ ( 𝑃  ∈  ℙ  →  𝑃  =  Σ 𝑘  ∈  { 1 } ( { 〈 1 ,  𝑃 〉 } ‘ 1 ) ) | 
						
							| 20 |  | 1le3 | ⊢ 1  ≤  3 | 
						
							| 21 | 19 20 | jctil | ⊢ ( 𝑃  ∈  ℙ  →  ( 1  ≤  3  ∧  𝑃  =  Σ 𝑘  ∈  { 1 } ( { 〈 1 ,  𝑃 〉 } ‘ 1 ) ) ) | 
						
							| 22 |  | simpl | ⊢ ( ( 𝑓  =  { 〈 1 ,  𝑃 〉 }  ∧  𝑘  ∈  { 1 } )  →  𝑓  =  { 〈 1 ,  𝑃 〉 } ) | 
						
							| 23 |  | elsni | ⊢ ( 𝑘  ∈  { 1 }  →  𝑘  =  1 ) | 
						
							| 24 | 23 | adantl | ⊢ ( ( 𝑓  =  { 〈 1 ,  𝑃 〉 }  ∧  𝑘  ∈  { 1 } )  →  𝑘  =  1 ) | 
						
							| 25 | 22 24 | fveq12d | ⊢ ( ( 𝑓  =  { 〈 1 ,  𝑃 〉 }  ∧  𝑘  ∈  { 1 } )  →  ( 𝑓 ‘ 𝑘 )  =  ( { 〈 1 ,  𝑃 〉 } ‘ 1 ) ) | 
						
							| 26 | 25 | sumeq2dv | ⊢ ( 𝑓  =  { 〈 1 ,  𝑃 〉 }  →  Σ 𝑘  ∈  { 1 } ( 𝑓 ‘ 𝑘 )  =  Σ 𝑘  ∈  { 1 } ( { 〈 1 ,  𝑃 〉 } ‘ 1 ) ) | 
						
							| 27 | 26 | eqeq2d | ⊢ ( 𝑓  =  { 〈 1 ,  𝑃 〉 }  →  ( 𝑃  =  Σ 𝑘  ∈  { 1 } ( 𝑓 ‘ 𝑘 )  ↔  𝑃  =  Σ 𝑘  ∈  { 1 } ( { 〈 1 ,  𝑃 〉 } ‘ 1 ) ) ) | 
						
							| 28 | 27 | anbi2d | ⊢ ( 𝑓  =  { 〈 1 ,  𝑃 〉 }  →  ( ( 1  ≤  3  ∧  𝑃  =  Σ 𝑘  ∈  { 1 } ( 𝑓 ‘ 𝑘 ) )  ↔  ( 1  ≤  3  ∧  𝑃  =  Σ 𝑘  ∈  { 1 } ( { 〈 1 ,  𝑃 〉 } ‘ 1 ) ) ) ) | 
						
							| 29 | 28 | rspcev | ⊢ ( ( { 〈 1 ,  𝑃 〉 }  ∈  ( ℙ  ↑m  { 1 } )  ∧  ( 1  ≤  3  ∧  𝑃  =  Σ 𝑘  ∈  { 1 } ( { 〈 1 ,  𝑃 〉 } ‘ 1 ) ) )  →  ∃ 𝑓  ∈  ( ℙ  ↑m  { 1 } ) ( 1  ≤  3  ∧  𝑃  =  Σ 𝑘  ∈  { 1 } ( 𝑓 ‘ 𝑘 ) ) ) | 
						
							| 30 | 8 21 29 | syl2anc | ⊢ ( 𝑃  ∈  ℙ  →  ∃ 𝑓  ∈  ( ℙ  ↑m  { 1 } ) ( 1  ≤  3  ∧  𝑃  =  Σ 𝑘  ∈  { 1 } ( 𝑓 ‘ 𝑘 ) ) ) | 
						
							| 31 |  | oveq2 | ⊢ ( 𝑑  =  1  →  ( 1 ... 𝑑 )  =  ( 1 ... 1 ) ) | 
						
							| 32 |  | 1z | ⊢ 1  ∈  ℤ | 
						
							| 33 |  | fzsn | ⊢ ( 1  ∈  ℤ  →  ( 1 ... 1 )  =  { 1 } ) | 
						
							| 34 | 32 33 | ax-mp | ⊢ ( 1 ... 1 )  =  { 1 } | 
						
							| 35 | 31 34 | eqtrdi | ⊢ ( 𝑑  =  1  →  ( 1 ... 𝑑 )  =  { 1 } ) | 
						
							| 36 | 35 | oveq2d | ⊢ ( 𝑑  =  1  →  ( ℙ  ↑m  ( 1 ... 𝑑 ) )  =  ( ℙ  ↑m  { 1 } ) ) | 
						
							| 37 |  | breq1 | ⊢ ( 𝑑  =  1  →  ( 𝑑  ≤  3  ↔  1  ≤  3 ) ) | 
						
							| 38 | 35 | sumeq1d | ⊢ ( 𝑑  =  1  →  Σ 𝑘  ∈  ( 1 ... 𝑑 ) ( 𝑓 ‘ 𝑘 )  =  Σ 𝑘  ∈  { 1 } ( 𝑓 ‘ 𝑘 ) ) | 
						
							| 39 | 38 | eqeq2d | ⊢ ( 𝑑  =  1  →  ( 𝑃  =  Σ 𝑘  ∈  ( 1 ... 𝑑 ) ( 𝑓 ‘ 𝑘 )  ↔  𝑃  =  Σ 𝑘  ∈  { 1 } ( 𝑓 ‘ 𝑘 ) ) ) | 
						
							| 40 | 37 39 | anbi12d | ⊢ ( 𝑑  =  1  →  ( ( 𝑑  ≤  3  ∧  𝑃  =  Σ 𝑘  ∈  ( 1 ... 𝑑 ) ( 𝑓 ‘ 𝑘 ) )  ↔  ( 1  ≤  3  ∧  𝑃  =  Σ 𝑘  ∈  { 1 } ( 𝑓 ‘ 𝑘 ) ) ) ) | 
						
							| 41 | 36 40 | rexeqbidv | ⊢ ( 𝑑  =  1  →  ( ∃ 𝑓  ∈  ( ℙ  ↑m  ( 1 ... 𝑑 ) ) ( 𝑑  ≤  3  ∧  𝑃  =  Σ 𝑘  ∈  ( 1 ... 𝑑 ) ( 𝑓 ‘ 𝑘 ) )  ↔  ∃ 𝑓  ∈  ( ℙ  ↑m  { 1 } ) ( 1  ≤  3  ∧  𝑃  =  Σ 𝑘  ∈  { 1 } ( 𝑓 ‘ 𝑘 ) ) ) ) | 
						
							| 42 | 41 | rspcev | ⊢ ( ( 1  ∈  ℕ  ∧  ∃ 𝑓  ∈  ( ℙ  ↑m  { 1 } ) ( 1  ≤  3  ∧  𝑃  =  Σ 𝑘  ∈  { 1 } ( 𝑓 ‘ 𝑘 ) ) )  →  ∃ 𝑑  ∈  ℕ ∃ 𝑓  ∈  ( ℙ  ↑m  ( 1 ... 𝑑 ) ) ( 𝑑  ≤  3  ∧  𝑃  =  Σ 𝑘  ∈  ( 1 ... 𝑑 ) ( 𝑓 ‘ 𝑘 ) ) ) | 
						
							| 43 | 1 30 42 | sylancr | ⊢ ( 𝑃  ∈  ℙ  →  ∃ 𝑑  ∈  ℕ ∃ 𝑓  ∈  ( ℙ  ↑m  ( 1 ... 𝑑 ) ) ( 𝑑  ≤  3  ∧  𝑃  =  Σ 𝑘  ∈  ( 1 ... 𝑑 ) ( 𝑓 ‘ 𝑘 ) ) ) |