| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nnsum3primesprm | ⊢ ( 𝑃  ∈  ℙ  →  ∃ 𝑑  ∈  ℕ ∃ 𝑓  ∈  ( ℙ  ↑m  ( 1 ... 𝑑 ) ) ( 𝑑  ≤  3  ∧  𝑃  =  Σ 𝑘  ∈  ( 1 ... 𝑑 ) ( 𝑓 ‘ 𝑘 ) ) ) | 
						
							| 2 |  | 3lt4 | ⊢ 3  <  4 | 
						
							| 3 |  | nnre | ⊢ ( 𝑑  ∈  ℕ  →  𝑑  ∈  ℝ ) | 
						
							| 4 |  | 3re | ⊢ 3  ∈  ℝ | 
						
							| 5 | 4 | a1i | ⊢ ( 𝑑  ∈  ℕ  →  3  ∈  ℝ ) | 
						
							| 6 |  | 4re | ⊢ 4  ∈  ℝ | 
						
							| 7 | 6 | a1i | ⊢ ( 𝑑  ∈  ℕ  →  4  ∈  ℝ ) | 
						
							| 8 |  | leltletr | ⊢ ( ( 𝑑  ∈  ℝ  ∧  3  ∈  ℝ  ∧  4  ∈  ℝ )  →  ( ( 𝑑  ≤  3  ∧  3  <  4 )  →  𝑑  ≤  4 ) ) | 
						
							| 9 | 3 5 7 8 | syl3anc | ⊢ ( 𝑑  ∈  ℕ  →  ( ( 𝑑  ≤  3  ∧  3  <  4 )  →  𝑑  ≤  4 ) ) | 
						
							| 10 | 2 9 | mpan2i | ⊢ ( 𝑑  ∈  ℕ  →  ( 𝑑  ≤  3  →  𝑑  ≤  4 ) ) | 
						
							| 11 | 10 | anim1d | ⊢ ( 𝑑  ∈  ℕ  →  ( ( 𝑑  ≤  3  ∧  𝑃  =  Σ 𝑘  ∈  ( 1 ... 𝑑 ) ( 𝑓 ‘ 𝑘 ) )  →  ( 𝑑  ≤  4  ∧  𝑃  =  Σ 𝑘  ∈  ( 1 ... 𝑑 ) ( 𝑓 ‘ 𝑘 ) ) ) ) | 
						
							| 12 | 11 | reximdv | ⊢ ( 𝑑  ∈  ℕ  →  ( ∃ 𝑓  ∈  ( ℙ  ↑m  ( 1 ... 𝑑 ) ) ( 𝑑  ≤  3  ∧  𝑃  =  Σ 𝑘  ∈  ( 1 ... 𝑑 ) ( 𝑓 ‘ 𝑘 ) )  →  ∃ 𝑓  ∈  ( ℙ  ↑m  ( 1 ... 𝑑 ) ) ( 𝑑  ≤  4  ∧  𝑃  =  Σ 𝑘  ∈  ( 1 ... 𝑑 ) ( 𝑓 ‘ 𝑘 ) ) ) ) | 
						
							| 13 | 12 | reximia | ⊢ ( ∃ 𝑑  ∈  ℕ ∃ 𝑓  ∈  ( ℙ  ↑m  ( 1 ... 𝑑 ) ) ( 𝑑  ≤  3  ∧  𝑃  =  Σ 𝑘  ∈  ( 1 ... 𝑑 ) ( 𝑓 ‘ 𝑘 ) )  →  ∃ 𝑑  ∈  ℕ ∃ 𝑓  ∈  ( ℙ  ↑m  ( 1 ... 𝑑 ) ) ( 𝑑  ≤  4  ∧  𝑃  =  Σ 𝑘  ∈  ( 1 ... 𝑑 ) ( 𝑓 ‘ 𝑘 ) ) ) | 
						
							| 14 | 1 13 | syl | ⊢ ( 𝑃  ∈  ℙ  →  ∃ 𝑑  ∈  ℕ ∃ 𝑓  ∈  ( ℙ  ↑m  ( 1 ... 𝑑 ) ) ( 𝑑  ≤  4  ∧  𝑃  =  Σ 𝑘  ∈  ( 1 ... 𝑑 ) ( 𝑓 ‘ 𝑘 ) ) ) |