Step |
Hyp |
Ref |
Expression |
1 |
|
1nn |
|
2 |
|
1zzd |
|
3 |
|
id |
|
4 |
2 3
|
fsnd |
|
5 |
|
prmex |
|
6 |
|
snex |
|
7 |
5 6
|
elmap |
|
8 |
4 7
|
sylibr |
|
9 |
|
1re |
|
10 |
|
simpl |
|
11 |
|
fvsng |
|
12 |
9 10 11
|
sylancr |
|
13 |
12
|
sumeq2dv |
|
14 |
|
prmz |
|
15 |
14
|
zcnd |
|
16 |
|
eqidd |
|
17 |
16
|
sumsn |
|
18 |
9 15 17
|
sylancr |
|
19 |
13 18
|
eqtr2d |
|
20 |
|
1le3 |
|
21 |
19 20
|
jctil |
|
22 |
|
simpl |
|
23 |
|
elsni |
|
24 |
23
|
adantl |
|
25 |
22 24
|
fveq12d |
|
26 |
25
|
sumeq2dv |
|
27 |
26
|
eqeq2d |
|
28 |
27
|
anbi2d |
|
29 |
28
|
rspcev |
|
30 |
8 21 29
|
syl2anc |
|
31 |
|
oveq2 |
|
32 |
|
1z |
|
33 |
|
fzsn |
|
34 |
32 33
|
ax-mp |
|
35 |
31 34
|
eqtrdi |
|
36 |
35
|
oveq2d |
|
37 |
|
breq1 |
|
38 |
35
|
sumeq1d |
|
39 |
38
|
eqeq2d |
|
40 |
37 39
|
anbi12d |
|
41 |
36 40
|
rexeqbidv |
|
42 |
41
|
rspcev |
|
43 |
1 30 42
|
sylancr |
|