| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pm3.35 | ⊢ ( ( 7  <  𝑛  ∧  ( 7  <  𝑛  →  𝑛  ∈   GoldbachOdd  ) )  →  𝑛  ∈   GoldbachOdd  ) | 
						
							| 2 |  | gbogbow | ⊢ ( 𝑛  ∈   GoldbachOdd   →  𝑛  ∈   GoldbachOddW  ) | 
						
							| 3 | 2 | a1d | ⊢ ( 𝑛  ∈   GoldbachOdd   →  ( 5  <  𝑛  →  𝑛  ∈   GoldbachOddW  ) ) | 
						
							| 4 | 1 3 | syl | ⊢ ( ( 7  <  𝑛  ∧  ( 7  <  𝑛  →  𝑛  ∈   GoldbachOdd  ) )  →  ( 5  <  𝑛  →  𝑛  ∈   GoldbachOddW  ) ) | 
						
							| 5 | 4 | ex | ⊢ ( 7  <  𝑛  →  ( ( 7  <  𝑛  →  𝑛  ∈   GoldbachOdd  )  →  ( 5  <  𝑛  →  𝑛  ∈   GoldbachOddW  ) ) ) | 
						
							| 6 | 5 | a1d | ⊢ ( 7  <  𝑛  →  ( 𝑛  ∈   Odd   →  ( ( 7  <  𝑛  →  𝑛  ∈   GoldbachOdd  )  →  ( 5  <  𝑛  →  𝑛  ∈   GoldbachOddW  ) ) ) ) | 
						
							| 7 |  | oddz | ⊢ ( 𝑛  ∈   Odd   →  𝑛  ∈  ℤ ) | 
						
							| 8 | 7 | zred | ⊢ ( 𝑛  ∈   Odd   →  𝑛  ∈  ℝ ) | 
						
							| 9 |  | 7re | ⊢ 7  ∈  ℝ | 
						
							| 10 | 9 | a1i | ⊢ ( 𝑛  ∈   Odd   →  7  ∈  ℝ ) | 
						
							| 11 | 8 10 | lenltd | ⊢ ( 𝑛  ∈   Odd   →  ( 𝑛  ≤  7  ↔  ¬  7  <  𝑛 ) ) | 
						
							| 12 | 8 10 | leloed | ⊢ ( 𝑛  ∈   Odd   →  ( 𝑛  ≤  7  ↔  ( 𝑛  <  7  ∨  𝑛  =  7 ) ) ) | 
						
							| 13 | 7 | adantr | ⊢ ( ( 𝑛  ∈   Odd   ∧  5  <  𝑛 )  →  𝑛  ∈  ℤ ) | 
						
							| 14 |  | 6nn | ⊢ 6  ∈  ℕ | 
						
							| 15 | 14 | nnzi | ⊢ 6  ∈  ℤ | 
						
							| 16 | 13 15 | jctir | ⊢ ( ( 𝑛  ∈   Odd   ∧  5  <  𝑛 )  →  ( 𝑛  ∈  ℤ  ∧  6  ∈  ℤ ) ) | 
						
							| 17 | 16 | adantl | ⊢ ( ( 𝑛  <  7  ∧  ( 𝑛  ∈   Odd   ∧  5  <  𝑛 ) )  →  ( 𝑛  ∈  ℤ  ∧  6  ∈  ℤ ) ) | 
						
							| 18 |  | df-7 | ⊢ 7  =  ( 6  +  1 ) | 
						
							| 19 | 18 | breq2i | ⊢ ( 𝑛  <  7  ↔  𝑛  <  ( 6  +  1 ) ) | 
						
							| 20 | 19 | biimpi | ⊢ ( 𝑛  <  7  →  𝑛  <  ( 6  +  1 ) ) | 
						
							| 21 |  | df-6 | ⊢ 6  =  ( 5  +  1 ) | 
						
							| 22 |  | 5nn | ⊢ 5  ∈  ℕ | 
						
							| 23 | 22 | nnzi | ⊢ 5  ∈  ℤ | 
						
							| 24 |  | zltp1le | ⊢ ( ( 5  ∈  ℤ  ∧  𝑛  ∈  ℤ )  →  ( 5  <  𝑛  ↔  ( 5  +  1 )  ≤  𝑛 ) ) | 
						
							| 25 | 23 7 24 | sylancr | ⊢ ( 𝑛  ∈   Odd   →  ( 5  <  𝑛  ↔  ( 5  +  1 )  ≤  𝑛 ) ) | 
						
							| 26 | 25 | biimpa | ⊢ ( ( 𝑛  ∈   Odd   ∧  5  <  𝑛 )  →  ( 5  +  1 )  ≤  𝑛 ) | 
						
							| 27 | 21 26 | eqbrtrid | ⊢ ( ( 𝑛  ∈   Odd   ∧  5  <  𝑛 )  →  6  ≤  𝑛 ) | 
						
							| 28 | 20 27 | anim12ci | ⊢ ( ( 𝑛  <  7  ∧  ( 𝑛  ∈   Odd   ∧  5  <  𝑛 ) )  →  ( 6  ≤  𝑛  ∧  𝑛  <  ( 6  +  1 ) ) ) | 
						
							| 29 |  | zgeltp1eq | ⊢ ( ( 𝑛  ∈  ℤ  ∧  6  ∈  ℤ )  →  ( ( 6  ≤  𝑛  ∧  𝑛  <  ( 6  +  1 ) )  →  𝑛  =  6 ) ) | 
						
							| 30 | 17 28 29 | sylc | ⊢ ( ( 𝑛  <  7  ∧  ( 𝑛  ∈   Odd   ∧  5  <  𝑛 ) )  →  𝑛  =  6 ) | 
						
							| 31 | 30 | orcd | ⊢ ( ( 𝑛  <  7  ∧  ( 𝑛  ∈   Odd   ∧  5  <  𝑛 ) )  →  ( 𝑛  =  6  ∨  𝑛  =  7 ) ) | 
						
							| 32 | 31 | ex | ⊢ ( 𝑛  <  7  →  ( ( 𝑛  ∈   Odd   ∧  5  <  𝑛 )  →  ( 𝑛  =  6  ∨  𝑛  =  7 ) ) ) | 
						
							| 33 |  | olc | ⊢ ( 𝑛  =  7  →  ( 𝑛  =  6  ∨  𝑛  =  7 ) ) | 
						
							| 34 | 33 | a1d | ⊢ ( 𝑛  =  7  →  ( ( 𝑛  ∈   Odd   ∧  5  <  𝑛 )  →  ( 𝑛  =  6  ∨  𝑛  =  7 ) ) ) | 
						
							| 35 | 32 34 | jaoi | ⊢ ( ( 𝑛  <  7  ∨  𝑛  =  7 )  →  ( ( 𝑛  ∈   Odd   ∧  5  <  𝑛 )  →  ( 𝑛  =  6  ∨  𝑛  =  7 ) ) ) | 
						
							| 36 | 35 | expd | ⊢ ( ( 𝑛  <  7  ∨  𝑛  =  7 )  →  ( 𝑛  ∈   Odd   →  ( 5  <  𝑛  →  ( 𝑛  =  6  ∨  𝑛  =  7 ) ) ) ) | 
						
							| 37 | 36 | com12 | ⊢ ( 𝑛  ∈   Odd   →  ( ( 𝑛  <  7  ∨  𝑛  =  7 )  →  ( 5  <  𝑛  →  ( 𝑛  =  6  ∨  𝑛  =  7 ) ) ) ) | 
						
							| 38 | 12 37 | sylbid | ⊢ ( 𝑛  ∈   Odd   →  ( 𝑛  ≤  7  →  ( 5  <  𝑛  →  ( 𝑛  =  6  ∨  𝑛  =  7 ) ) ) ) | 
						
							| 39 |  | eleq1 | ⊢ ( 𝑛  =  6  →  ( 𝑛  ∈   Odd   ↔  6  ∈   Odd  ) ) | 
						
							| 40 |  | 6even | ⊢ 6  ∈   Even | 
						
							| 41 |  | evennodd | ⊢ ( 6  ∈   Even   →  ¬  6  ∈   Odd  ) | 
						
							| 42 | 41 | pm2.21d | ⊢ ( 6  ∈   Even   →  ( 6  ∈   Odd   →  𝑛  ∈   GoldbachOddW  ) ) | 
						
							| 43 | 40 42 | mp1i | ⊢ ( 𝑛  =  6  →  ( 6  ∈   Odd   →  𝑛  ∈   GoldbachOddW  ) ) | 
						
							| 44 | 39 43 | sylbid | ⊢ ( 𝑛  =  6  →  ( 𝑛  ∈   Odd   →  𝑛  ∈   GoldbachOddW  ) ) | 
						
							| 45 |  | 7gbow | ⊢ 7  ∈   GoldbachOddW | 
						
							| 46 |  | eleq1 | ⊢ ( 𝑛  =  7  →  ( 𝑛  ∈   GoldbachOddW   ↔  7  ∈   GoldbachOddW  ) ) | 
						
							| 47 | 45 46 | mpbiri | ⊢ ( 𝑛  =  7  →  𝑛  ∈   GoldbachOddW  ) | 
						
							| 48 | 47 | a1d | ⊢ ( 𝑛  =  7  →  ( 𝑛  ∈   Odd   →  𝑛  ∈   GoldbachOddW  ) ) | 
						
							| 49 | 44 48 | jaoi | ⊢ ( ( 𝑛  =  6  ∨  𝑛  =  7 )  →  ( 𝑛  ∈   Odd   →  𝑛  ∈   GoldbachOddW  ) ) | 
						
							| 50 | 49 | com12 | ⊢ ( 𝑛  ∈   Odd   →  ( ( 𝑛  =  6  ∨  𝑛  =  7 )  →  𝑛  ∈   GoldbachOddW  ) ) | 
						
							| 51 | 38 50 | syl6d | ⊢ ( 𝑛  ∈   Odd   →  ( 𝑛  ≤  7  →  ( 5  <  𝑛  →  𝑛  ∈   GoldbachOddW  ) ) ) | 
						
							| 52 | 11 51 | sylbird | ⊢ ( 𝑛  ∈   Odd   →  ( ¬  7  <  𝑛  →  ( 5  <  𝑛  →  𝑛  ∈   GoldbachOddW  ) ) ) | 
						
							| 53 | 52 | com12 | ⊢ ( ¬  7  <  𝑛  →  ( 𝑛  ∈   Odd   →  ( 5  <  𝑛  →  𝑛  ∈   GoldbachOddW  ) ) ) | 
						
							| 54 | 53 | a1dd | ⊢ ( ¬  7  <  𝑛  →  ( 𝑛  ∈   Odd   →  ( ( 7  <  𝑛  →  𝑛  ∈   GoldbachOdd  )  →  ( 5  <  𝑛  →  𝑛  ∈   GoldbachOddW  ) ) ) ) | 
						
							| 55 | 6 54 | pm2.61i | ⊢ ( 𝑛  ∈   Odd   →  ( ( 7  <  𝑛  →  𝑛  ∈   GoldbachOdd  )  →  ( 5  <  𝑛  →  𝑛  ∈   GoldbachOddW  ) ) ) | 
						
							| 56 | 55 | ralimia | ⊢ ( ∀ 𝑛  ∈   Odd  ( 7  <  𝑛  →  𝑛  ∈   GoldbachOdd  )  →  ∀ 𝑛  ∈   Odd  ( 5  <  𝑛  →  𝑛  ∈   GoldbachOddW  ) ) |