| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pm3.35 |  |-  ( ( 7 < n /\ ( 7 < n -> n e. GoldbachOdd ) ) -> n e. GoldbachOdd ) | 
						
							| 2 |  | gbogbow |  |-  ( n e. GoldbachOdd -> n e. GoldbachOddW ) | 
						
							| 3 | 2 | a1d |  |-  ( n e. GoldbachOdd -> ( 5 < n -> n e. GoldbachOddW ) ) | 
						
							| 4 | 1 3 | syl |  |-  ( ( 7 < n /\ ( 7 < n -> n e. GoldbachOdd ) ) -> ( 5 < n -> n e. GoldbachOddW ) ) | 
						
							| 5 | 4 | ex |  |-  ( 7 < n -> ( ( 7 < n -> n e. GoldbachOdd ) -> ( 5 < n -> n e. GoldbachOddW ) ) ) | 
						
							| 6 | 5 | a1d |  |-  ( 7 < n -> ( n e. Odd -> ( ( 7 < n -> n e. GoldbachOdd ) -> ( 5 < n -> n e. GoldbachOddW ) ) ) ) | 
						
							| 7 |  | oddz |  |-  ( n e. Odd -> n e. ZZ ) | 
						
							| 8 | 7 | zred |  |-  ( n e. Odd -> n e. RR ) | 
						
							| 9 |  | 7re |  |-  7 e. RR | 
						
							| 10 | 9 | a1i |  |-  ( n e. Odd -> 7 e. RR ) | 
						
							| 11 | 8 10 | lenltd |  |-  ( n e. Odd -> ( n <_ 7 <-> -. 7 < n ) ) | 
						
							| 12 | 8 10 | leloed |  |-  ( n e. Odd -> ( n <_ 7 <-> ( n < 7 \/ n = 7 ) ) ) | 
						
							| 13 | 7 | adantr |  |-  ( ( n e. Odd /\ 5 < n ) -> n e. ZZ ) | 
						
							| 14 |  | 6nn |  |-  6 e. NN | 
						
							| 15 | 14 | nnzi |  |-  6 e. ZZ | 
						
							| 16 | 13 15 | jctir |  |-  ( ( n e. Odd /\ 5 < n ) -> ( n e. ZZ /\ 6 e. ZZ ) ) | 
						
							| 17 | 16 | adantl |  |-  ( ( n < 7 /\ ( n e. Odd /\ 5 < n ) ) -> ( n e. ZZ /\ 6 e. ZZ ) ) | 
						
							| 18 |  | df-7 |  |-  7 = ( 6 + 1 ) | 
						
							| 19 | 18 | breq2i |  |-  ( n < 7 <-> n < ( 6 + 1 ) ) | 
						
							| 20 | 19 | biimpi |  |-  ( n < 7 -> n < ( 6 + 1 ) ) | 
						
							| 21 |  | df-6 |  |-  6 = ( 5 + 1 ) | 
						
							| 22 |  | 5nn |  |-  5 e. NN | 
						
							| 23 | 22 | nnzi |  |-  5 e. ZZ | 
						
							| 24 |  | zltp1le |  |-  ( ( 5 e. ZZ /\ n e. ZZ ) -> ( 5 < n <-> ( 5 + 1 ) <_ n ) ) | 
						
							| 25 | 23 7 24 | sylancr |  |-  ( n e. Odd -> ( 5 < n <-> ( 5 + 1 ) <_ n ) ) | 
						
							| 26 | 25 | biimpa |  |-  ( ( n e. Odd /\ 5 < n ) -> ( 5 + 1 ) <_ n ) | 
						
							| 27 | 21 26 | eqbrtrid |  |-  ( ( n e. Odd /\ 5 < n ) -> 6 <_ n ) | 
						
							| 28 | 20 27 | anim12ci |  |-  ( ( n < 7 /\ ( n e. Odd /\ 5 < n ) ) -> ( 6 <_ n /\ n < ( 6 + 1 ) ) ) | 
						
							| 29 |  | zgeltp1eq |  |-  ( ( n e. ZZ /\ 6 e. ZZ ) -> ( ( 6 <_ n /\ n < ( 6 + 1 ) ) -> n = 6 ) ) | 
						
							| 30 | 17 28 29 | sylc |  |-  ( ( n < 7 /\ ( n e. Odd /\ 5 < n ) ) -> n = 6 ) | 
						
							| 31 | 30 | orcd |  |-  ( ( n < 7 /\ ( n e. Odd /\ 5 < n ) ) -> ( n = 6 \/ n = 7 ) ) | 
						
							| 32 | 31 | ex |  |-  ( n < 7 -> ( ( n e. Odd /\ 5 < n ) -> ( n = 6 \/ n = 7 ) ) ) | 
						
							| 33 |  | olc |  |-  ( n = 7 -> ( n = 6 \/ n = 7 ) ) | 
						
							| 34 | 33 | a1d |  |-  ( n = 7 -> ( ( n e. Odd /\ 5 < n ) -> ( n = 6 \/ n = 7 ) ) ) | 
						
							| 35 | 32 34 | jaoi |  |-  ( ( n < 7 \/ n = 7 ) -> ( ( n e. Odd /\ 5 < n ) -> ( n = 6 \/ n = 7 ) ) ) | 
						
							| 36 | 35 | expd |  |-  ( ( n < 7 \/ n = 7 ) -> ( n e. Odd -> ( 5 < n -> ( n = 6 \/ n = 7 ) ) ) ) | 
						
							| 37 | 36 | com12 |  |-  ( n e. Odd -> ( ( n < 7 \/ n = 7 ) -> ( 5 < n -> ( n = 6 \/ n = 7 ) ) ) ) | 
						
							| 38 | 12 37 | sylbid |  |-  ( n e. Odd -> ( n <_ 7 -> ( 5 < n -> ( n = 6 \/ n = 7 ) ) ) ) | 
						
							| 39 |  | eleq1 |  |-  ( n = 6 -> ( n e. Odd <-> 6 e. Odd ) ) | 
						
							| 40 |  | 6even |  |-  6 e. Even | 
						
							| 41 |  | evennodd |  |-  ( 6 e. Even -> -. 6 e. Odd ) | 
						
							| 42 | 41 | pm2.21d |  |-  ( 6 e. Even -> ( 6 e. Odd -> n e. GoldbachOddW ) ) | 
						
							| 43 | 40 42 | mp1i |  |-  ( n = 6 -> ( 6 e. Odd -> n e. GoldbachOddW ) ) | 
						
							| 44 | 39 43 | sylbid |  |-  ( n = 6 -> ( n e. Odd -> n e. GoldbachOddW ) ) | 
						
							| 45 |  | 7gbow |  |-  7 e. GoldbachOddW | 
						
							| 46 |  | eleq1 |  |-  ( n = 7 -> ( n e. GoldbachOddW <-> 7 e. GoldbachOddW ) ) | 
						
							| 47 | 45 46 | mpbiri |  |-  ( n = 7 -> n e. GoldbachOddW ) | 
						
							| 48 | 47 | a1d |  |-  ( n = 7 -> ( n e. Odd -> n e. GoldbachOddW ) ) | 
						
							| 49 | 44 48 | jaoi |  |-  ( ( n = 6 \/ n = 7 ) -> ( n e. Odd -> n e. GoldbachOddW ) ) | 
						
							| 50 | 49 | com12 |  |-  ( n e. Odd -> ( ( n = 6 \/ n = 7 ) -> n e. GoldbachOddW ) ) | 
						
							| 51 | 38 50 | syl6d |  |-  ( n e. Odd -> ( n <_ 7 -> ( 5 < n -> n e. GoldbachOddW ) ) ) | 
						
							| 52 | 11 51 | sylbird |  |-  ( n e. Odd -> ( -. 7 < n -> ( 5 < n -> n e. GoldbachOddW ) ) ) | 
						
							| 53 | 52 | com12 |  |-  ( -. 7 < n -> ( n e. Odd -> ( 5 < n -> n e. GoldbachOddW ) ) ) | 
						
							| 54 | 53 | a1dd |  |-  ( -. 7 < n -> ( n e. Odd -> ( ( 7 < n -> n e. GoldbachOdd ) -> ( 5 < n -> n e. GoldbachOddW ) ) ) ) | 
						
							| 55 | 6 54 | pm2.61i |  |-  ( n e. Odd -> ( ( 7 < n -> n e. GoldbachOdd ) -> ( 5 < n -> n e. GoldbachOddW ) ) ) | 
						
							| 56 | 55 | ralimia |  |-  ( A. n e. Odd ( 7 < n -> n e. GoldbachOdd ) -> A. n e. Odd ( 5 < n -> n e. GoldbachOddW ) ) |