Step |
Hyp |
Ref |
Expression |
1 |
|
2z |
⊢ 2 ∈ ℤ |
2 |
|
9nn |
⊢ 9 ∈ ℕ |
3 |
2
|
nnzi |
⊢ 9 ∈ ℤ |
4 |
|
2re |
⊢ 2 ∈ ℝ |
5 |
|
9re |
⊢ 9 ∈ ℝ |
6 |
|
2lt9 |
⊢ 2 < 9 |
7 |
4 5 6
|
ltleii |
⊢ 2 ≤ 9 |
8 |
|
eluz2 |
⊢ ( 9 ∈ ( ℤ≥ ‘ 2 ) ↔ ( 2 ∈ ℤ ∧ 9 ∈ ℤ ∧ 2 ≤ 9 ) ) |
9 |
1 3 7 8
|
mpbir3an |
⊢ 9 ∈ ( ℤ≥ ‘ 2 ) |
10 |
|
fzouzsplit |
⊢ ( 9 ∈ ( ℤ≥ ‘ 2 ) → ( ℤ≥ ‘ 2 ) = ( ( 2 ..^ 9 ) ∪ ( ℤ≥ ‘ 9 ) ) ) |
11 |
10
|
eleq2d |
⊢ ( 9 ∈ ( ℤ≥ ‘ 2 ) → ( 𝑛 ∈ ( ℤ≥ ‘ 2 ) ↔ 𝑛 ∈ ( ( 2 ..^ 9 ) ∪ ( ℤ≥ ‘ 9 ) ) ) ) |
12 |
9 11
|
ax-mp |
⊢ ( 𝑛 ∈ ( ℤ≥ ‘ 2 ) ↔ 𝑛 ∈ ( ( 2 ..^ 9 ) ∪ ( ℤ≥ ‘ 9 ) ) ) |
13 |
|
elun |
⊢ ( 𝑛 ∈ ( ( 2 ..^ 9 ) ∪ ( ℤ≥ ‘ 9 ) ) ↔ ( 𝑛 ∈ ( 2 ..^ 9 ) ∨ 𝑛 ∈ ( ℤ≥ ‘ 9 ) ) ) |
14 |
12 13
|
bitri |
⊢ ( 𝑛 ∈ ( ℤ≥ ‘ 2 ) ↔ ( 𝑛 ∈ ( 2 ..^ 9 ) ∨ 𝑛 ∈ ( ℤ≥ ‘ 9 ) ) ) |
15 |
|
elfzo2 |
⊢ ( 𝑛 ∈ ( 2 ..^ 9 ) ↔ ( 𝑛 ∈ ( ℤ≥ ‘ 2 ) ∧ 9 ∈ ℤ ∧ 𝑛 < 9 ) ) |
16 |
|
simp1 |
⊢ ( ( 𝑛 ∈ ( ℤ≥ ‘ 2 ) ∧ 9 ∈ ℤ ∧ 𝑛 < 9 ) → 𝑛 ∈ ( ℤ≥ ‘ 2 ) ) |
17 |
|
df-9 |
⊢ 9 = ( 8 + 1 ) |
18 |
17
|
breq2i |
⊢ ( 𝑛 < 9 ↔ 𝑛 < ( 8 + 1 ) ) |
19 |
|
eluz2nn |
⊢ ( 𝑛 ∈ ( ℤ≥ ‘ 2 ) → 𝑛 ∈ ℕ ) |
20 |
|
8nn |
⊢ 8 ∈ ℕ |
21 |
19 20
|
jctir |
⊢ ( 𝑛 ∈ ( ℤ≥ ‘ 2 ) → ( 𝑛 ∈ ℕ ∧ 8 ∈ ℕ ) ) |
22 |
21
|
adantr |
⊢ ( ( 𝑛 ∈ ( ℤ≥ ‘ 2 ) ∧ 9 ∈ ℤ ) → ( 𝑛 ∈ ℕ ∧ 8 ∈ ℕ ) ) |
23 |
|
nnleltp1 |
⊢ ( ( 𝑛 ∈ ℕ ∧ 8 ∈ ℕ ) → ( 𝑛 ≤ 8 ↔ 𝑛 < ( 8 + 1 ) ) ) |
24 |
22 23
|
syl |
⊢ ( ( 𝑛 ∈ ( ℤ≥ ‘ 2 ) ∧ 9 ∈ ℤ ) → ( 𝑛 ≤ 8 ↔ 𝑛 < ( 8 + 1 ) ) ) |
25 |
24
|
biimprd |
⊢ ( ( 𝑛 ∈ ( ℤ≥ ‘ 2 ) ∧ 9 ∈ ℤ ) → ( 𝑛 < ( 8 + 1 ) → 𝑛 ≤ 8 ) ) |
26 |
18 25
|
syl5bi |
⊢ ( ( 𝑛 ∈ ( ℤ≥ ‘ 2 ) ∧ 9 ∈ ℤ ) → ( 𝑛 < 9 → 𝑛 ≤ 8 ) ) |
27 |
26
|
3impia |
⊢ ( ( 𝑛 ∈ ( ℤ≥ ‘ 2 ) ∧ 9 ∈ ℤ ∧ 𝑛 < 9 ) → 𝑛 ≤ 8 ) |
28 |
16 27
|
jca |
⊢ ( ( 𝑛 ∈ ( ℤ≥ ‘ 2 ) ∧ 9 ∈ ℤ ∧ 𝑛 < 9 ) → ( 𝑛 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑛 ≤ 8 ) ) |
29 |
15 28
|
sylbi |
⊢ ( 𝑛 ∈ ( 2 ..^ 9 ) → ( 𝑛 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑛 ≤ 8 ) ) |
30 |
|
nnsum4primesle9 |
⊢ ( ( 𝑛 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑛 ≤ 8 ) → ∃ 𝑑 ∈ ℕ ∃ 𝑓 ∈ ( ℙ ↑m ( 1 ... 𝑑 ) ) ( 𝑑 ≤ 4 ∧ 𝑛 = Σ 𝑘 ∈ ( 1 ... 𝑑 ) ( 𝑓 ‘ 𝑘 ) ) ) |
31 |
29 30
|
syl |
⊢ ( 𝑛 ∈ ( 2 ..^ 9 ) → ∃ 𝑑 ∈ ℕ ∃ 𝑓 ∈ ( ℙ ↑m ( 1 ... 𝑑 ) ) ( 𝑑 ≤ 4 ∧ 𝑛 = Σ 𝑘 ∈ ( 1 ... 𝑑 ) ( 𝑓 ‘ 𝑘 ) ) ) |
32 |
31
|
a1d |
⊢ ( 𝑛 ∈ ( 2 ..^ 9 ) → ( ∀ 𝑚 ∈ Odd ( 5 < 𝑚 → 𝑚 ∈ GoldbachOddW ) → ∃ 𝑑 ∈ ℕ ∃ 𝑓 ∈ ( ℙ ↑m ( 1 ... 𝑑 ) ) ( 𝑑 ≤ 4 ∧ 𝑛 = Σ 𝑘 ∈ ( 1 ... 𝑑 ) ( 𝑓 ‘ 𝑘 ) ) ) ) |
33 |
|
4nn |
⊢ 4 ∈ ℕ |
34 |
33
|
a1i |
⊢ ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 9 ) ∧ 𝑛 ∈ Even ) ∧ ∀ 𝑚 ∈ Odd ( 5 < 𝑚 → 𝑚 ∈ GoldbachOddW ) ) → 4 ∈ ℕ ) |
35 |
|
oveq2 |
⊢ ( 𝑑 = 4 → ( 1 ... 𝑑 ) = ( 1 ... 4 ) ) |
36 |
35
|
oveq2d |
⊢ ( 𝑑 = 4 → ( ℙ ↑m ( 1 ... 𝑑 ) ) = ( ℙ ↑m ( 1 ... 4 ) ) ) |
37 |
|
breq1 |
⊢ ( 𝑑 = 4 → ( 𝑑 ≤ 4 ↔ 4 ≤ 4 ) ) |
38 |
35
|
sumeq1d |
⊢ ( 𝑑 = 4 → Σ 𝑘 ∈ ( 1 ... 𝑑 ) ( 𝑓 ‘ 𝑘 ) = Σ 𝑘 ∈ ( 1 ... 4 ) ( 𝑓 ‘ 𝑘 ) ) |
39 |
38
|
eqeq2d |
⊢ ( 𝑑 = 4 → ( 𝑛 = Σ 𝑘 ∈ ( 1 ... 𝑑 ) ( 𝑓 ‘ 𝑘 ) ↔ 𝑛 = Σ 𝑘 ∈ ( 1 ... 4 ) ( 𝑓 ‘ 𝑘 ) ) ) |
40 |
37 39
|
anbi12d |
⊢ ( 𝑑 = 4 → ( ( 𝑑 ≤ 4 ∧ 𝑛 = Σ 𝑘 ∈ ( 1 ... 𝑑 ) ( 𝑓 ‘ 𝑘 ) ) ↔ ( 4 ≤ 4 ∧ 𝑛 = Σ 𝑘 ∈ ( 1 ... 4 ) ( 𝑓 ‘ 𝑘 ) ) ) ) |
41 |
36 40
|
rexeqbidv |
⊢ ( 𝑑 = 4 → ( ∃ 𝑓 ∈ ( ℙ ↑m ( 1 ... 𝑑 ) ) ( 𝑑 ≤ 4 ∧ 𝑛 = Σ 𝑘 ∈ ( 1 ... 𝑑 ) ( 𝑓 ‘ 𝑘 ) ) ↔ ∃ 𝑓 ∈ ( ℙ ↑m ( 1 ... 4 ) ) ( 4 ≤ 4 ∧ 𝑛 = Σ 𝑘 ∈ ( 1 ... 4 ) ( 𝑓 ‘ 𝑘 ) ) ) ) |
42 |
41
|
adantl |
⊢ ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 9 ) ∧ 𝑛 ∈ Even ) ∧ ∀ 𝑚 ∈ Odd ( 5 < 𝑚 → 𝑚 ∈ GoldbachOddW ) ) ∧ 𝑑 = 4 ) → ( ∃ 𝑓 ∈ ( ℙ ↑m ( 1 ... 𝑑 ) ) ( 𝑑 ≤ 4 ∧ 𝑛 = Σ 𝑘 ∈ ( 1 ... 𝑑 ) ( 𝑓 ‘ 𝑘 ) ) ↔ ∃ 𝑓 ∈ ( ℙ ↑m ( 1 ... 4 ) ) ( 4 ≤ 4 ∧ 𝑛 = Σ 𝑘 ∈ ( 1 ... 4 ) ( 𝑓 ‘ 𝑘 ) ) ) ) |
43 |
|
4re |
⊢ 4 ∈ ℝ |
44 |
43
|
leidi |
⊢ 4 ≤ 4 |
45 |
44
|
a1i |
⊢ ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 9 ) ∧ 𝑛 ∈ Even ) ∧ ∀ 𝑚 ∈ Odd ( 5 < 𝑚 → 𝑚 ∈ GoldbachOddW ) ) → 4 ≤ 4 ) |
46 |
|
nnsum4primeseven |
⊢ ( ∀ 𝑚 ∈ Odd ( 5 < 𝑚 → 𝑚 ∈ GoldbachOddW ) → ( ( 𝑛 ∈ ( ℤ≥ ‘ 9 ) ∧ 𝑛 ∈ Even ) → ∃ 𝑓 ∈ ( ℙ ↑m ( 1 ... 4 ) ) 𝑛 = Σ 𝑘 ∈ ( 1 ... 4 ) ( 𝑓 ‘ 𝑘 ) ) ) |
47 |
46
|
impcom |
⊢ ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 9 ) ∧ 𝑛 ∈ Even ) ∧ ∀ 𝑚 ∈ Odd ( 5 < 𝑚 → 𝑚 ∈ GoldbachOddW ) ) → ∃ 𝑓 ∈ ( ℙ ↑m ( 1 ... 4 ) ) 𝑛 = Σ 𝑘 ∈ ( 1 ... 4 ) ( 𝑓 ‘ 𝑘 ) ) |
48 |
|
r19.42v |
⊢ ( ∃ 𝑓 ∈ ( ℙ ↑m ( 1 ... 4 ) ) ( 4 ≤ 4 ∧ 𝑛 = Σ 𝑘 ∈ ( 1 ... 4 ) ( 𝑓 ‘ 𝑘 ) ) ↔ ( 4 ≤ 4 ∧ ∃ 𝑓 ∈ ( ℙ ↑m ( 1 ... 4 ) ) 𝑛 = Σ 𝑘 ∈ ( 1 ... 4 ) ( 𝑓 ‘ 𝑘 ) ) ) |
49 |
45 47 48
|
sylanbrc |
⊢ ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 9 ) ∧ 𝑛 ∈ Even ) ∧ ∀ 𝑚 ∈ Odd ( 5 < 𝑚 → 𝑚 ∈ GoldbachOddW ) ) → ∃ 𝑓 ∈ ( ℙ ↑m ( 1 ... 4 ) ) ( 4 ≤ 4 ∧ 𝑛 = Σ 𝑘 ∈ ( 1 ... 4 ) ( 𝑓 ‘ 𝑘 ) ) ) |
50 |
34 42 49
|
rspcedvd |
⊢ ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 9 ) ∧ 𝑛 ∈ Even ) ∧ ∀ 𝑚 ∈ Odd ( 5 < 𝑚 → 𝑚 ∈ GoldbachOddW ) ) → ∃ 𝑑 ∈ ℕ ∃ 𝑓 ∈ ( ℙ ↑m ( 1 ... 𝑑 ) ) ( 𝑑 ≤ 4 ∧ 𝑛 = Σ 𝑘 ∈ ( 1 ... 𝑑 ) ( 𝑓 ‘ 𝑘 ) ) ) |
51 |
50
|
ex |
⊢ ( ( 𝑛 ∈ ( ℤ≥ ‘ 9 ) ∧ 𝑛 ∈ Even ) → ( ∀ 𝑚 ∈ Odd ( 5 < 𝑚 → 𝑚 ∈ GoldbachOddW ) → ∃ 𝑑 ∈ ℕ ∃ 𝑓 ∈ ( ℙ ↑m ( 1 ... 𝑑 ) ) ( 𝑑 ≤ 4 ∧ 𝑛 = Σ 𝑘 ∈ ( 1 ... 𝑑 ) ( 𝑓 ‘ 𝑘 ) ) ) ) |
52 |
|
3nn |
⊢ 3 ∈ ℕ |
53 |
52
|
a1i |
⊢ ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 9 ) ∧ 𝑛 ∈ Odd ) ∧ ∀ 𝑚 ∈ Odd ( 5 < 𝑚 → 𝑚 ∈ GoldbachOddW ) ) → 3 ∈ ℕ ) |
54 |
|
oveq2 |
⊢ ( 𝑑 = 3 → ( 1 ... 𝑑 ) = ( 1 ... 3 ) ) |
55 |
54
|
oveq2d |
⊢ ( 𝑑 = 3 → ( ℙ ↑m ( 1 ... 𝑑 ) ) = ( ℙ ↑m ( 1 ... 3 ) ) ) |
56 |
|
breq1 |
⊢ ( 𝑑 = 3 → ( 𝑑 ≤ 4 ↔ 3 ≤ 4 ) ) |
57 |
54
|
sumeq1d |
⊢ ( 𝑑 = 3 → Σ 𝑘 ∈ ( 1 ... 𝑑 ) ( 𝑓 ‘ 𝑘 ) = Σ 𝑘 ∈ ( 1 ... 3 ) ( 𝑓 ‘ 𝑘 ) ) |
58 |
57
|
eqeq2d |
⊢ ( 𝑑 = 3 → ( 𝑛 = Σ 𝑘 ∈ ( 1 ... 𝑑 ) ( 𝑓 ‘ 𝑘 ) ↔ 𝑛 = Σ 𝑘 ∈ ( 1 ... 3 ) ( 𝑓 ‘ 𝑘 ) ) ) |
59 |
56 58
|
anbi12d |
⊢ ( 𝑑 = 3 → ( ( 𝑑 ≤ 4 ∧ 𝑛 = Σ 𝑘 ∈ ( 1 ... 𝑑 ) ( 𝑓 ‘ 𝑘 ) ) ↔ ( 3 ≤ 4 ∧ 𝑛 = Σ 𝑘 ∈ ( 1 ... 3 ) ( 𝑓 ‘ 𝑘 ) ) ) ) |
60 |
55 59
|
rexeqbidv |
⊢ ( 𝑑 = 3 → ( ∃ 𝑓 ∈ ( ℙ ↑m ( 1 ... 𝑑 ) ) ( 𝑑 ≤ 4 ∧ 𝑛 = Σ 𝑘 ∈ ( 1 ... 𝑑 ) ( 𝑓 ‘ 𝑘 ) ) ↔ ∃ 𝑓 ∈ ( ℙ ↑m ( 1 ... 3 ) ) ( 3 ≤ 4 ∧ 𝑛 = Σ 𝑘 ∈ ( 1 ... 3 ) ( 𝑓 ‘ 𝑘 ) ) ) ) |
61 |
60
|
adantl |
⊢ ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 9 ) ∧ 𝑛 ∈ Odd ) ∧ ∀ 𝑚 ∈ Odd ( 5 < 𝑚 → 𝑚 ∈ GoldbachOddW ) ) ∧ 𝑑 = 3 ) → ( ∃ 𝑓 ∈ ( ℙ ↑m ( 1 ... 𝑑 ) ) ( 𝑑 ≤ 4 ∧ 𝑛 = Σ 𝑘 ∈ ( 1 ... 𝑑 ) ( 𝑓 ‘ 𝑘 ) ) ↔ ∃ 𝑓 ∈ ( ℙ ↑m ( 1 ... 3 ) ) ( 3 ≤ 4 ∧ 𝑛 = Σ 𝑘 ∈ ( 1 ... 3 ) ( 𝑓 ‘ 𝑘 ) ) ) ) |
62 |
|
3re |
⊢ 3 ∈ ℝ |
63 |
|
3lt4 |
⊢ 3 < 4 |
64 |
62 43 63
|
ltleii |
⊢ 3 ≤ 4 |
65 |
64
|
a1i |
⊢ ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 9 ) ∧ 𝑛 ∈ Odd ) ∧ ∀ 𝑚 ∈ Odd ( 5 < 𝑚 → 𝑚 ∈ GoldbachOddW ) ) → 3 ≤ 4 ) |
66 |
|
6nn |
⊢ 6 ∈ ℕ |
67 |
66
|
nnzi |
⊢ 6 ∈ ℤ |
68 |
|
6re |
⊢ 6 ∈ ℝ |
69 |
|
6lt9 |
⊢ 6 < 9 |
70 |
68 5 69
|
ltleii |
⊢ 6 ≤ 9 |
71 |
|
eluzuzle |
⊢ ( ( 6 ∈ ℤ ∧ 6 ≤ 9 ) → ( 𝑛 ∈ ( ℤ≥ ‘ 9 ) → 𝑛 ∈ ( ℤ≥ ‘ 6 ) ) ) |
72 |
67 70 71
|
mp2an |
⊢ ( 𝑛 ∈ ( ℤ≥ ‘ 9 ) → 𝑛 ∈ ( ℤ≥ ‘ 6 ) ) |
73 |
72
|
anim1i |
⊢ ( ( 𝑛 ∈ ( ℤ≥ ‘ 9 ) ∧ 𝑛 ∈ Odd ) → ( 𝑛 ∈ ( ℤ≥ ‘ 6 ) ∧ 𝑛 ∈ Odd ) ) |
74 |
|
nnsum4primesodd |
⊢ ( ∀ 𝑚 ∈ Odd ( 5 < 𝑚 → 𝑚 ∈ GoldbachOddW ) → ( ( 𝑛 ∈ ( ℤ≥ ‘ 6 ) ∧ 𝑛 ∈ Odd ) → ∃ 𝑓 ∈ ( ℙ ↑m ( 1 ... 3 ) ) 𝑛 = Σ 𝑘 ∈ ( 1 ... 3 ) ( 𝑓 ‘ 𝑘 ) ) ) |
75 |
73 74
|
mpan9 |
⊢ ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 9 ) ∧ 𝑛 ∈ Odd ) ∧ ∀ 𝑚 ∈ Odd ( 5 < 𝑚 → 𝑚 ∈ GoldbachOddW ) ) → ∃ 𝑓 ∈ ( ℙ ↑m ( 1 ... 3 ) ) 𝑛 = Σ 𝑘 ∈ ( 1 ... 3 ) ( 𝑓 ‘ 𝑘 ) ) |
76 |
|
r19.42v |
⊢ ( ∃ 𝑓 ∈ ( ℙ ↑m ( 1 ... 3 ) ) ( 3 ≤ 4 ∧ 𝑛 = Σ 𝑘 ∈ ( 1 ... 3 ) ( 𝑓 ‘ 𝑘 ) ) ↔ ( 3 ≤ 4 ∧ ∃ 𝑓 ∈ ( ℙ ↑m ( 1 ... 3 ) ) 𝑛 = Σ 𝑘 ∈ ( 1 ... 3 ) ( 𝑓 ‘ 𝑘 ) ) ) |
77 |
65 75 76
|
sylanbrc |
⊢ ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 9 ) ∧ 𝑛 ∈ Odd ) ∧ ∀ 𝑚 ∈ Odd ( 5 < 𝑚 → 𝑚 ∈ GoldbachOddW ) ) → ∃ 𝑓 ∈ ( ℙ ↑m ( 1 ... 3 ) ) ( 3 ≤ 4 ∧ 𝑛 = Σ 𝑘 ∈ ( 1 ... 3 ) ( 𝑓 ‘ 𝑘 ) ) ) |
78 |
53 61 77
|
rspcedvd |
⊢ ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 9 ) ∧ 𝑛 ∈ Odd ) ∧ ∀ 𝑚 ∈ Odd ( 5 < 𝑚 → 𝑚 ∈ GoldbachOddW ) ) → ∃ 𝑑 ∈ ℕ ∃ 𝑓 ∈ ( ℙ ↑m ( 1 ... 𝑑 ) ) ( 𝑑 ≤ 4 ∧ 𝑛 = Σ 𝑘 ∈ ( 1 ... 𝑑 ) ( 𝑓 ‘ 𝑘 ) ) ) |
79 |
78
|
ex |
⊢ ( ( 𝑛 ∈ ( ℤ≥ ‘ 9 ) ∧ 𝑛 ∈ Odd ) → ( ∀ 𝑚 ∈ Odd ( 5 < 𝑚 → 𝑚 ∈ GoldbachOddW ) → ∃ 𝑑 ∈ ℕ ∃ 𝑓 ∈ ( ℙ ↑m ( 1 ... 𝑑 ) ) ( 𝑑 ≤ 4 ∧ 𝑛 = Σ 𝑘 ∈ ( 1 ... 𝑑 ) ( 𝑓 ‘ 𝑘 ) ) ) ) |
80 |
|
eluzelz |
⊢ ( 𝑛 ∈ ( ℤ≥ ‘ 9 ) → 𝑛 ∈ ℤ ) |
81 |
|
zeoALTV |
⊢ ( 𝑛 ∈ ℤ → ( 𝑛 ∈ Even ∨ 𝑛 ∈ Odd ) ) |
82 |
80 81
|
syl |
⊢ ( 𝑛 ∈ ( ℤ≥ ‘ 9 ) → ( 𝑛 ∈ Even ∨ 𝑛 ∈ Odd ) ) |
83 |
51 79 82
|
mpjaodan |
⊢ ( 𝑛 ∈ ( ℤ≥ ‘ 9 ) → ( ∀ 𝑚 ∈ Odd ( 5 < 𝑚 → 𝑚 ∈ GoldbachOddW ) → ∃ 𝑑 ∈ ℕ ∃ 𝑓 ∈ ( ℙ ↑m ( 1 ... 𝑑 ) ) ( 𝑑 ≤ 4 ∧ 𝑛 = Σ 𝑘 ∈ ( 1 ... 𝑑 ) ( 𝑓 ‘ 𝑘 ) ) ) ) |
84 |
32 83
|
jaoi |
⊢ ( ( 𝑛 ∈ ( 2 ..^ 9 ) ∨ 𝑛 ∈ ( ℤ≥ ‘ 9 ) ) → ( ∀ 𝑚 ∈ Odd ( 5 < 𝑚 → 𝑚 ∈ GoldbachOddW ) → ∃ 𝑑 ∈ ℕ ∃ 𝑓 ∈ ( ℙ ↑m ( 1 ... 𝑑 ) ) ( 𝑑 ≤ 4 ∧ 𝑛 = Σ 𝑘 ∈ ( 1 ... 𝑑 ) ( 𝑓 ‘ 𝑘 ) ) ) ) |
85 |
14 84
|
sylbi |
⊢ ( 𝑛 ∈ ( ℤ≥ ‘ 2 ) → ( ∀ 𝑚 ∈ Odd ( 5 < 𝑚 → 𝑚 ∈ GoldbachOddW ) → ∃ 𝑑 ∈ ℕ ∃ 𝑓 ∈ ( ℙ ↑m ( 1 ... 𝑑 ) ) ( 𝑑 ≤ 4 ∧ 𝑛 = Σ 𝑘 ∈ ( 1 ... 𝑑 ) ( 𝑓 ‘ 𝑘 ) ) ) ) |
86 |
85
|
impcom |
⊢ ( ( ∀ 𝑚 ∈ Odd ( 5 < 𝑚 → 𝑚 ∈ GoldbachOddW ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 2 ) ) → ∃ 𝑑 ∈ ℕ ∃ 𝑓 ∈ ( ℙ ↑m ( 1 ... 𝑑 ) ) ( 𝑑 ≤ 4 ∧ 𝑛 = Σ 𝑘 ∈ ( 1 ... 𝑑 ) ( 𝑓 ‘ 𝑘 ) ) ) |
87 |
86
|
ralrimiva |
⊢ ( ∀ 𝑚 ∈ Odd ( 5 < 𝑚 → 𝑚 ∈ GoldbachOddW ) → ∀ 𝑛 ∈ ( ℤ≥ ‘ 2 ) ∃ 𝑑 ∈ ℕ ∃ 𝑓 ∈ ( ℙ ↑m ( 1 ... 𝑑 ) ) ( 𝑑 ≤ 4 ∧ 𝑛 = Σ 𝑘 ∈ ( 1 ... 𝑑 ) ( 𝑓 ‘ 𝑘 ) ) ) |