Step |
Hyp |
Ref |
Expression |
1 |
|
evengpop3 |
⊢ ( ∀ 𝑚 ∈ Odd ( 5 < 𝑚 → 𝑚 ∈ GoldbachOddW ) → ( ( 𝑁 ∈ ( ℤ≥ ‘ 9 ) ∧ 𝑁 ∈ Even ) → ∃ 𝑜 ∈ GoldbachOddW 𝑁 = ( 𝑜 + 3 ) ) ) |
2 |
1
|
imp |
⊢ ( ( ∀ 𝑚 ∈ Odd ( 5 < 𝑚 → 𝑚 ∈ GoldbachOddW ) ∧ ( 𝑁 ∈ ( ℤ≥ ‘ 9 ) ∧ 𝑁 ∈ Even ) ) → ∃ 𝑜 ∈ GoldbachOddW 𝑁 = ( 𝑜 + 3 ) ) |
3 |
|
simplll |
⊢ ( ( ( ( ∀ 𝑚 ∈ Odd ( 5 < 𝑚 → 𝑚 ∈ GoldbachOddW ) ∧ ( 𝑁 ∈ ( ℤ≥ ‘ 9 ) ∧ 𝑁 ∈ Even ) ) ∧ 𝑜 ∈ GoldbachOddW ) ∧ 𝑁 = ( 𝑜 + 3 ) ) → ∀ 𝑚 ∈ Odd ( 5 < 𝑚 → 𝑚 ∈ GoldbachOddW ) ) |
4 |
|
6nn |
⊢ 6 ∈ ℕ |
5 |
4
|
nnzi |
⊢ 6 ∈ ℤ |
6 |
5
|
a1i |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 9 ) → 6 ∈ ℤ ) |
7 |
|
3z |
⊢ 3 ∈ ℤ |
8 |
7
|
a1i |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 9 ) → 3 ∈ ℤ ) |
9 |
|
6p3e9 |
⊢ ( 6 + 3 ) = 9 |
10 |
9
|
eqcomi |
⊢ 9 = ( 6 + 3 ) |
11 |
10
|
fveq2i |
⊢ ( ℤ≥ ‘ 9 ) = ( ℤ≥ ‘ ( 6 + 3 ) ) |
12 |
11
|
eleq2i |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 9 ) ↔ 𝑁 ∈ ( ℤ≥ ‘ ( 6 + 3 ) ) ) |
13 |
12
|
biimpi |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 9 ) → 𝑁 ∈ ( ℤ≥ ‘ ( 6 + 3 ) ) ) |
14 |
|
eluzsub |
⊢ ( ( 6 ∈ ℤ ∧ 3 ∈ ℤ ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 6 + 3 ) ) ) → ( 𝑁 − 3 ) ∈ ( ℤ≥ ‘ 6 ) ) |
15 |
6 8 13 14
|
syl3anc |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 9 ) → ( 𝑁 − 3 ) ∈ ( ℤ≥ ‘ 6 ) ) |
16 |
15
|
adantr |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 9 ) ∧ 𝑁 ∈ Even ) → ( 𝑁 − 3 ) ∈ ( ℤ≥ ‘ 6 ) ) |
17 |
16
|
ad3antlr |
⊢ ( ( ( ( ∀ 𝑚 ∈ Odd ( 5 < 𝑚 → 𝑚 ∈ GoldbachOddW ) ∧ ( 𝑁 ∈ ( ℤ≥ ‘ 9 ) ∧ 𝑁 ∈ Even ) ) ∧ 𝑜 ∈ GoldbachOddW ) ∧ 𝑁 = ( 𝑜 + 3 ) ) → ( 𝑁 − 3 ) ∈ ( ℤ≥ ‘ 6 ) ) |
18 |
|
3odd |
⊢ 3 ∈ Odd |
19 |
18
|
a1i |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 9 ) → 3 ∈ Odd ) |
20 |
19
|
anim1i |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 9 ) ∧ 𝑁 ∈ Even ) → ( 3 ∈ Odd ∧ 𝑁 ∈ Even ) ) |
21 |
20
|
adantl |
⊢ ( ( ∀ 𝑚 ∈ Odd ( 5 < 𝑚 → 𝑚 ∈ GoldbachOddW ) ∧ ( 𝑁 ∈ ( ℤ≥ ‘ 9 ) ∧ 𝑁 ∈ Even ) ) → ( 3 ∈ Odd ∧ 𝑁 ∈ Even ) ) |
22 |
21
|
ancomd |
⊢ ( ( ∀ 𝑚 ∈ Odd ( 5 < 𝑚 → 𝑚 ∈ GoldbachOddW ) ∧ ( 𝑁 ∈ ( ℤ≥ ‘ 9 ) ∧ 𝑁 ∈ Even ) ) → ( 𝑁 ∈ Even ∧ 3 ∈ Odd ) ) |
23 |
22
|
adantr |
⊢ ( ( ( ∀ 𝑚 ∈ Odd ( 5 < 𝑚 → 𝑚 ∈ GoldbachOddW ) ∧ ( 𝑁 ∈ ( ℤ≥ ‘ 9 ) ∧ 𝑁 ∈ Even ) ) ∧ 𝑜 ∈ GoldbachOddW ) → ( 𝑁 ∈ Even ∧ 3 ∈ Odd ) ) |
24 |
23
|
adantr |
⊢ ( ( ( ( ∀ 𝑚 ∈ Odd ( 5 < 𝑚 → 𝑚 ∈ GoldbachOddW ) ∧ ( 𝑁 ∈ ( ℤ≥ ‘ 9 ) ∧ 𝑁 ∈ Even ) ) ∧ 𝑜 ∈ GoldbachOddW ) ∧ 𝑁 = ( 𝑜 + 3 ) ) → ( 𝑁 ∈ Even ∧ 3 ∈ Odd ) ) |
25 |
|
emoo |
⊢ ( ( 𝑁 ∈ Even ∧ 3 ∈ Odd ) → ( 𝑁 − 3 ) ∈ Odd ) |
26 |
24 25
|
syl |
⊢ ( ( ( ( ∀ 𝑚 ∈ Odd ( 5 < 𝑚 → 𝑚 ∈ GoldbachOddW ) ∧ ( 𝑁 ∈ ( ℤ≥ ‘ 9 ) ∧ 𝑁 ∈ Even ) ) ∧ 𝑜 ∈ GoldbachOddW ) ∧ 𝑁 = ( 𝑜 + 3 ) ) → ( 𝑁 − 3 ) ∈ Odd ) |
27 |
|
nnsum4primesodd |
⊢ ( ∀ 𝑚 ∈ Odd ( 5 < 𝑚 → 𝑚 ∈ GoldbachOddW ) → ( ( ( 𝑁 − 3 ) ∈ ( ℤ≥ ‘ 6 ) ∧ ( 𝑁 − 3 ) ∈ Odd ) → ∃ 𝑔 ∈ ( ℙ ↑m ( 1 ... 3 ) ) ( 𝑁 − 3 ) = Σ 𝑘 ∈ ( 1 ... 3 ) ( 𝑔 ‘ 𝑘 ) ) ) |
28 |
27
|
imp |
⊢ ( ( ∀ 𝑚 ∈ Odd ( 5 < 𝑚 → 𝑚 ∈ GoldbachOddW ) ∧ ( ( 𝑁 − 3 ) ∈ ( ℤ≥ ‘ 6 ) ∧ ( 𝑁 − 3 ) ∈ Odd ) ) → ∃ 𝑔 ∈ ( ℙ ↑m ( 1 ... 3 ) ) ( 𝑁 − 3 ) = Σ 𝑘 ∈ ( 1 ... 3 ) ( 𝑔 ‘ 𝑘 ) ) |
29 |
3 17 26 28
|
syl12anc |
⊢ ( ( ( ( ∀ 𝑚 ∈ Odd ( 5 < 𝑚 → 𝑚 ∈ GoldbachOddW ) ∧ ( 𝑁 ∈ ( ℤ≥ ‘ 9 ) ∧ 𝑁 ∈ Even ) ) ∧ 𝑜 ∈ GoldbachOddW ) ∧ 𝑁 = ( 𝑜 + 3 ) ) → ∃ 𝑔 ∈ ( ℙ ↑m ( 1 ... 3 ) ) ( 𝑁 − 3 ) = Σ 𝑘 ∈ ( 1 ... 3 ) ( 𝑔 ‘ 𝑘 ) ) |
30 |
|
simpr |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 9 ) ∧ 𝑔 : ( 1 ... 3 ) ⟶ ℙ ) → 𝑔 : ( 1 ... 3 ) ⟶ ℙ ) |
31 |
|
4z |
⊢ 4 ∈ ℤ |
32 |
|
fzonel |
⊢ ¬ 4 ∈ ( 1 ..^ 4 ) |
33 |
|
fzoval |
⊢ ( 4 ∈ ℤ → ( 1 ..^ 4 ) = ( 1 ... ( 4 − 1 ) ) ) |
34 |
31 33
|
ax-mp |
⊢ ( 1 ..^ 4 ) = ( 1 ... ( 4 − 1 ) ) |
35 |
|
4cn |
⊢ 4 ∈ ℂ |
36 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
37 |
|
3cn |
⊢ 3 ∈ ℂ |
38 |
35 36 37
|
3pm3.2i |
⊢ ( 4 ∈ ℂ ∧ 1 ∈ ℂ ∧ 3 ∈ ℂ ) |
39 |
|
3p1e4 |
⊢ ( 3 + 1 ) = 4 |
40 |
|
subadd2 |
⊢ ( ( 4 ∈ ℂ ∧ 1 ∈ ℂ ∧ 3 ∈ ℂ ) → ( ( 4 − 1 ) = 3 ↔ ( 3 + 1 ) = 4 ) ) |
41 |
39 40
|
mpbiri |
⊢ ( ( 4 ∈ ℂ ∧ 1 ∈ ℂ ∧ 3 ∈ ℂ ) → ( 4 − 1 ) = 3 ) |
42 |
38 41
|
ax-mp |
⊢ ( 4 − 1 ) = 3 |
43 |
42
|
oveq2i |
⊢ ( 1 ... ( 4 − 1 ) ) = ( 1 ... 3 ) |
44 |
34 43
|
eqtri |
⊢ ( 1 ..^ 4 ) = ( 1 ... 3 ) |
45 |
44
|
eqcomi |
⊢ ( 1 ... 3 ) = ( 1 ..^ 4 ) |
46 |
45
|
eleq2i |
⊢ ( 4 ∈ ( 1 ... 3 ) ↔ 4 ∈ ( 1 ..^ 4 ) ) |
47 |
32 46
|
mtbir |
⊢ ¬ 4 ∈ ( 1 ... 3 ) |
48 |
31 47
|
pm3.2i |
⊢ ( 4 ∈ ℤ ∧ ¬ 4 ∈ ( 1 ... 3 ) ) |
49 |
48
|
a1i |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 9 ) ∧ 𝑔 : ( 1 ... 3 ) ⟶ ℙ ) → ( 4 ∈ ℤ ∧ ¬ 4 ∈ ( 1 ... 3 ) ) ) |
50 |
|
3prm |
⊢ 3 ∈ ℙ |
51 |
50
|
a1i |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 9 ) ∧ 𝑔 : ( 1 ... 3 ) ⟶ ℙ ) → 3 ∈ ℙ ) |
52 |
|
fsnunf |
⊢ ( ( 𝑔 : ( 1 ... 3 ) ⟶ ℙ ∧ ( 4 ∈ ℤ ∧ ¬ 4 ∈ ( 1 ... 3 ) ) ∧ 3 ∈ ℙ ) → ( 𝑔 ∪ { 〈 4 , 3 〉 } ) : ( ( 1 ... 3 ) ∪ { 4 } ) ⟶ ℙ ) |
53 |
30 49 51 52
|
syl3anc |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 9 ) ∧ 𝑔 : ( 1 ... 3 ) ⟶ ℙ ) → ( 𝑔 ∪ { 〈 4 , 3 〉 } ) : ( ( 1 ... 3 ) ∪ { 4 } ) ⟶ ℙ ) |
54 |
|
fzval3 |
⊢ ( 4 ∈ ℤ → ( 1 ... 4 ) = ( 1 ..^ ( 4 + 1 ) ) ) |
55 |
31 54
|
ax-mp |
⊢ ( 1 ... 4 ) = ( 1 ..^ ( 4 + 1 ) ) |
56 |
|
1z |
⊢ 1 ∈ ℤ |
57 |
|
1re |
⊢ 1 ∈ ℝ |
58 |
|
4re |
⊢ 4 ∈ ℝ |
59 |
|
1lt4 |
⊢ 1 < 4 |
60 |
57 58 59
|
ltleii |
⊢ 1 ≤ 4 |
61 |
|
eluz2 |
⊢ ( 4 ∈ ( ℤ≥ ‘ 1 ) ↔ ( 1 ∈ ℤ ∧ 4 ∈ ℤ ∧ 1 ≤ 4 ) ) |
62 |
56 31 60 61
|
mpbir3an |
⊢ 4 ∈ ( ℤ≥ ‘ 1 ) |
63 |
|
fzosplitsn |
⊢ ( 4 ∈ ( ℤ≥ ‘ 1 ) → ( 1 ..^ ( 4 + 1 ) ) = ( ( 1 ..^ 4 ) ∪ { 4 } ) ) |
64 |
62 63
|
ax-mp |
⊢ ( 1 ..^ ( 4 + 1 ) ) = ( ( 1 ..^ 4 ) ∪ { 4 } ) |
65 |
44
|
uneq1i |
⊢ ( ( 1 ..^ 4 ) ∪ { 4 } ) = ( ( 1 ... 3 ) ∪ { 4 } ) |
66 |
55 64 65
|
3eqtri |
⊢ ( 1 ... 4 ) = ( ( 1 ... 3 ) ∪ { 4 } ) |
67 |
66
|
feq2i |
⊢ ( ( 𝑔 ∪ { 〈 4 , 3 〉 } ) : ( 1 ... 4 ) ⟶ ℙ ↔ ( 𝑔 ∪ { 〈 4 , 3 〉 } ) : ( ( 1 ... 3 ) ∪ { 4 } ) ⟶ ℙ ) |
68 |
53 67
|
sylibr |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 9 ) ∧ 𝑔 : ( 1 ... 3 ) ⟶ ℙ ) → ( 𝑔 ∪ { 〈 4 , 3 〉 } ) : ( 1 ... 4 ) ⟶ ℙ ) |
69 |
|
prmex |
⊢ ℙ ∈ V |
70 |
|
ovex |
⊢ ( 1 ... 4 ) ∈ V |
71 |
69 70
|
pm3.2i |
⊢ ( ℙ ∈ V ∧ ( 1 ... 4 ) ∈ V ) |
72 |
|
elmapg |
⊢ ( ( ℙ ∈ V ∧ ( 1 ... 4 ) ∈ V ) → ( ( 𝑔 ∪ { 〈 4 , 3 〉 } ) ∈ ( ℙ ↑m ( 1 ... 4 ) ) ↔ ( 𝑔 ∪ { 〈 4 , 3 〉 } ) : ( 1 ... 4 ) ⟶ ℙ ) ) |
73 |
71 72
|
mp1i |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 9 ) ∧ 𝑔 : ( 1 ... 3 ) ⟶ ℙ ) → ( ( 𝑔 ∪ { 〈 4 , 3 〉 } ) ∈ ( ℙ ↑m ( 1 ... 4 ) ) ↔ ( 𝑔 ∪ { 〈 4 , 3 〉 } ) : ( 1 ... 4 ) ⟶ ℙ ) ) |
74 |
68 73
|
mpbird |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 9 ) ∧ 𝑔 : ( 1 ... 3 ) ⟶ ℙ ) → ( 𝑔 ∪ { 〈 4 , 3 〉 } ) ∈ ( ℙ ↑m ( 1 ... 4 ) ) ) |
75 |
74
|
adantr |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 9 ) ∧ 𝑔 : ( 1 ... 3 ) ⟶ ℙ ) ∧ ( 𝑁 − 3 ) = Σ 𝑘 ∈ ( 1 ... 3 ) ( 𝑔 ‘ 𝑘 ) ) → ( 𝑔 ∪ { 〈 4 , 3 〉 } ) ∈ ( ℙ ↑m ( 1 ... 4 ) ) ) |
76 |
|
fveq1 |
⊢ ( 𝑓 = ( 𝑔 ∪ { 〈 4 , 3 〉 } ) → ( 𝑓 ‘ 𝑘 ) = ( ( 𝑔 ∪ { 〈 4 , 3 〉 } ) ‘ 𝑘 ) ) |
77 |
76
|
adantr |
⊢ ( ( 𝑓 = ( 𝑔 ∪ { 〈 4 , 3 〉 } ) ∧ 𝑘 ∈ ( 1 ... 4 ) ) → ( 𝑓 ‘ 𝑘 ) = ( ( 𝑔 ∪ { 〈 4 , 3 〉 } ) ‘ 𝑘 ) ) |
78 |
77
|
sumeq2dv |
⊢ ( 𝑓 = ( 𝑔 ∪ { 〈 4 , 3 〉 } ) → Σ 𝑘 ∈ ( 1 ... 4 ) ( 𝑓 ‘ 𝑘 ) = Σ 𝑘 ∈ ( 1 ... 4 ) ( ( 𝑔 ∪ { 〈 4 , 3 〉 } ) ‘ 𝑘 ) ) |
79 |
78
|
eqeq2d |
⊢ ( 𝑓 = ( 𝑔 ∪ { 〈 4 , 3 〉 } ) → ( 𝑁 = Σ 𝑘 ∈ ( 1 ... 4 ) ( 𝑓 ‘ 𝑘 ) ↔ 𝑁 = Σ 𝑘 ∈ ( 1 ... 4 ) ( ( 𝑔 ∪ { 〈 4 , 3 〉 } ) ‘ 𝑘 ) ) ) |
80 |
79
|
adantl |
⊢ ( ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 9 ) ∧ 𝑔 : ( 1 ... 3 ) ⟶ ℙ ) ∧ ( 𝑁 − 3 ) = Σ 𝑘 ∈ ( 1 ... 3 ) ( 𝑔 ‘ 𝑘 ) ) ∧ 𝑓 = ( 𝑔 ∪ { 〈 4 , 3 〉 } ) ) → ( 𝑁 = Σ 𝑘 ∈ ( 1 ... 4 ) ( 𝑓 ‘ 𝑘 ) ↔ 𝑁 = Σ 𝑘 ∈ ( 1 ... 4 ) ( ( 𝑔 ∪ { 〈 4 , 3 〉 } ) ‘ 𝑘 ) ) ) |
81 |
62
|
a1i |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 9 ) ∧ 𝑔 : ( 1 ... 3 ) ⟶ ℙ ) → 4 ∈ ( ℤ≥ ‘ 1 ) ) |
82 |
66
|
eleq2i |
⊢ ( 𝑘 ∈ ( 1 ... 4 ) ↔ 𝑘 ∈ ( ( 1 ... 3 ) ∪ { 4 } ) ) |
83 |
|
elun |
⊢ ( 𝑘 ∈ ( ( 1 ... 3 ) ∪ { 4 } ) ↔ ( 𝑘 ∈ ( 1 ... 3 ) ∨ 𝑘 ∈ { 4 } ) ) |
84 |
|
velsn |
⊢ ( 𝑘 ∈ { 4 } ↔ 𝑘 = 4 ) |
85 |
84
|
orbi2i |
⊢ ( ( 𝑘 ∈ ( 1 ... 3 ) ∨ 𝑘 ∈ { 4 } ) ↔ ( 𝑘 ∈ ( 1 ... 3 ) ∨ 𝑘 = 4 ) ) |
86 |
82 83 85
|
3bitri |
⊢ ( 𝑘 ∈ ( 1 ... 4 ) ↔ ( 𝑘 ∈ ( 1 ... 3 ) ∨ 𝑘 = 4 ) ) |
87 |
|
elfz2 |
⊢ ( 𝑘 ∈ ( 1 ... 3 ) ↔ ( ( 1 ∈ ℤ ∧ 3 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ∧ ( 1 ≤ 𝑘 ∧ 𝑘 ≤ 3 ) ) ) |
88 |
|
3re |
⊢ 3 ∈ ℝ |
89 |
88 58
|
pm3.2i |
⊢ ( 3 ∈ ℝ ∧ 4 ∈ ℝ ) |
90 |
|
3lt4 |
⊢ 3 < 4 |
91 |
|
ltnle |
⊢ ( ( 3 ∈ ℝ ∧ 4 ∈ ℝ ) → ( 3 < 4 ↔ ¬ 4 ≤ 3 ) ) |
92 |
90 91
|
mpbii |
⊢ ( ( 3 ∈ ℝ ∧ 4 ∈ ℝ ) → ¬ 4 ≤ 3 ) |
93 |
89 92
|
ax-mp |
⊢ ¬ 4 ≤ 3 |
94 |
|
breq1 |
⊢ ( 𝑘 = 4 → ( 𝑘 ≤ 3 ↔ 4 ≤ 3 ) ) |
95 |
94
|
eqcoms |
⊢ ( 4 = 𝑘 → ( 𝑘 ≤ 3 ↔ 4 ≤ 3 ) ) |
96 |
93 95
|
mtbiri |
⊢ ( 4 = 𝑘 → ¬ 𝑘 ≤ 3 ) |
97 |
96
|
a1i |
⊢ ( 𝑘 ∈ ℤ → ( 4 = 𝑘 → ¬ 𝑘 ≤ 3 ) ) |
98 |
97
|
necon2ad |
⊢ ( 𝑘 ∈ ℤ → ( 𝑘 ≤ 3 → 4 ≠ 𝑘 ) ) |
99 |
98
|
adantld |
⊢ ( 𝑘 ∈ ℤ → ( ( 1 ≤ 𝑘 ∧ 𝑘 ≤ 3 ) → 4 ≠ 𝑘 ) ) |
100 |
99
|
3ad2ant3 |
⊢ ( ( 1 ∈ ℤ ∧ 3 ∈ ℤ ∧ 𝑘 ∈ ℤ ) → ( ( 1 ≤ 𝑘 ∧ 𝑘 ≤ 3 ) → 4 ≠ 𝑘 ) ) |
101 |
100
|
imp |
⊢ ( ( ( 1 ∈ ℤ ∧ 3 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ∧ ( 1 ≤ 𝑘 ∧ 𝑘 ≤ 3 ) ) → 4 ≠ 𝑘 ) |
102 |
87 101
|
sylbi |
⊢ ( 𝑘 ∈ ( 1 ... 3 ) → 4 ≠ 𝑘 ) |
103 |
102
|
adantr |
⊢ ( ( 𝑘 ∈ ( 1 ... 3 ) ∧ 𝑔 : ( 1 ... 3 ) ⟶ ℙ ) → 4 ≠ 𝑘 ) |
104 |
|
fvunsn |
⊢ ( 4 ≠ 𝑘 → ( ( 𝑔 ∪ { 〈 4 , 3 〉 } ) ‘ 𝑘 ) = ( 𝑔 ‘ 𝑘 ) ) |
105 |
103 104
|
syl |
⊢ ( ( 𝑘 ∈ ( 1 ... 3 ) ∧ 𝑔 : ( 1 ... 3 ) ⟶ ℙ ) → ( ( 𝑔 ∪ { 〈 4 , 3 〉 } ) ‘ 𝑘 ) = ( 𝑔 ‘ 𝑘 ) ) |
106 |
|
ffvelrn |
⊢ ( ( 𝑔 : ( 1 ... 3 ) ⟶ ℙ ∧ 𝑘 ∈ ( 1 ... 3 ) ) → ( 𝑔 ‘ 𝑘 ) ∈ ℙ ) |
107 |
106
|
ancoms |
⊢ ( ( 𝑘 ∈ ( 1 ... 3 ) ∧ 𝑔 : ( 1 ... 3 ) ⟶ ℙ ) → ( 𝑔 ‘ 𝑘 ) ∈ ℙ ) |
108 |
|
prmz |
⊢ ( ( 𝑔 ‘ 𝑘 ) ∈ ℙ → ( 𝑔 ‘ 𝑘 ) ∈ ℤ ) |
109 |
107 108
|
syl |
⊢ ( ( 𝑘 ∈ ( 1 ... 3 ) ∧ 𝑔 : ( 1 ... 3 ) ⟶ ℙ ) → ( 𝑔 ‘ 𝑘 ) ∈ ℤ ) |
110 |
109
|
zcnd |
⊢ ( ( 𝑘 ∈ ( 1 ... 3 ) ∧ 𝑔 : ( 1 ... 3 ) ⟶ ℙ ) → ( 𝑔 ‘ 𝑘 ) ∈ ℂ ) |
111 |
105 110
|
eqeltrd |
⊢ ( ( 𝑘 ∈ ( 1 ... 3 ) ∧ 𝑔 : ( 1 ... 3 ) ⟶ ℙ ) → ( ( 𝑔 ∪ { 〈 4 , 3 〉 } ) ‘ 𝑘 ) ∈ ℂ ) |
112 |
111
|
ex |
⊢ ( 𝑘 ∈ ( 1 ... 3 ) → ( 𝑔 : ( 1 ... 3 ) ⟶ ℙ → ( ( 𝑔 ∪ { 〈 4 , 3 〉 } ) ‘ 𝑘 ) ∈ ℂ ) ) |
113 |
112
|
adantld |
⊢ ( 𝑘 ∈ ( 1 ... 3 ) → ( ( 𝑁 ∈ ( ℤ≥ ‘ 9 ) ∧ 𝑔 : ( 1 ... 3 ) ⟶ ℙ ) → ( ( 𝑔 ∪ { 〈 4 , 3 〉 } ) ‘ 𝑘 ) ∈ ℂ ) ) |
114 |
|
fveq2 |
⊢ ( 𝑘 = 4 → ( ( 𝑔 ∪ { 〈 4 , 3 〉 } ) ‘ 𝑘 ) = ( ( 𝑔 ∪ { 〈 4 , 3 〉 } ) ‘ 4 ) ) |
115 |
31
|
a1i |
⊢ ( 𝑔 : ( 1 ... 3 ) ⟶ ℙ → 4 ∈ ℤ ) |
116 |
7
|
a1i |
⊢ ( 𝑔 : ( 1 ... 3 ) ⟶ ℙ → 3 ∈ ℤ ) |
117 |
|
fdm |
⊢ ( 𝑔 : ( 1 ... 3 ) ⟶ ℙ → dom 𝑔 = ( 1 ... 3 ) ) |
118 |
|
eleq2 |
⊢ ( dom 𝑔 = ( 1 ... 3 ) → ( 4 ∈ dom 𝑔 ↔ 4 ∈ ( 1 ... 3 ) ) ) |
119 |
47 118
|
mtbiri |
⊢ ( dom 𝑔 = ( 1 ... 3 ) → ¬ 4 ∈ dom 𝑔 ) |
120 |
117 119
|
syl |
⊢ ( 𝑔 : ( 1 ... 3 ) ⟶ ℙ → ¬ 4 ∈ dom 𝑔 ) |
121 |
|
fsnunfv |
⊢ ( ( 4 ∈ ℤ ∧ 3 ∈ ℤ ∧ ¬ 4 ∈ dom 𝑔 ) → ( ( 𝑔 ∪ { 〈 4 , 3 〉 } ) ‘ 4 ) = 3 ) |
122 |
115 116 120 121
|
syl3anc |
⊢ ( 𝑔 : ( 1 ... 3 ) ⟶ ℙ → ( ( 𝑔 ∪ { 〈 4 , 3 〉 } ) ‘ 4 ) = 3 ) |
123 |
122
|
adantl |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 9 ) ∧ 𝑔 : ( 1 ... 3 ) ⟶ ℙ ) → ( ( 𝑔 ∪ { 〈 4 , 3 〉 } ) ‘ 4 ) = 3 ) |
124 |
114 123
|
sylan9eq |
⊢ ( ( 𝑘 = 4 ∧ ( 𝑁 ∈ ( ℤ≥ ‘ 9 ) ∧ 𝑔 : ( 1 ... 3 ) ⟶ ℙ ) ) → ( ( 𝑔 ∪ { 〈 4 , 3 〉 } ) ‘ 𝑘 ) = 3 ) |
125 |
124 37
|
eqeltrdi |
⊢ ( ( 𝑘 = 4 ∧ ( 𝑁 ∈ ( ℤ≥ ‘ 9 ) ∧ 𝑔 : ( 1 ... 3 ) ⟶ ℙ ) ) → ( ( 𝑔 ∪ { 〈 4 , 3 〉 } ) ‘ 𝑘 ) ∈ ℂ ) |
126 |
125
|
ex |
⊢ ( 𝑘 = 4 → ( ( 𝑁 ∈ ( ℤ≥ ‘ 9 ) ∧ 𝑔 : ( 1 ... 3 ) ⟶ ℙ ) → ( ( 𝑔 ∪ { 〈 4 , 3 〉 } ) ‘ 𝑘 ) ∈ ℂ ) ) |
127 |
113 126
|
jaoi |
⊢ ( ( 𝑘 ∈ ( 1 ... 3 ) ∨ 𝑘 = 4 ) → ( ( 𝑁 ∈ ( ℤ≥ ‘ 9 ) ∧ 𝑔 : ( 1 ... 3 ) ⟶ ℙ ) → ( ( 𝑔 ∪ { 〈 4 , 3 〉 } ) ‘ 𝑘 ) ∈ ℂ ) ) |
128 |
127
|
com12 |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 9 ) ∧ 𝑔 : ( 1 ... 3 ) ⟶ ℙ ) → ( ( 𝑘 ∈ ( 1 ... 3 ) ∨ 𝑘 = 4 ) → ( ( 𝑔 ∪ { 〈 4 , 3 〉 } ) ‘ 𝑘 ) ∈ ℂ ) ) |
129 |
86 128
|
syl5bi |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 9 ) ∧ 𝑔 : ( 1 ... 3 ) ⟶ ℙ ) → ( 𝑘 ∈ ( 1 ... 4 ) → ( ( 𝑔 ∪ { 〈 4 , 3 〉 } ) ‘ 𝑘 ) ∈ ℂ ) ) |
130 |
129
|
imp |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 9 ) ∧ 𝑔 : ( 1 ... 3 ) ⟶ ℙ ) ∧ 𝑘 ∈ ( 1 ... 4 ) ) → ( ( 𝑔 ∪ { 〈 4 , 3 〉 } ) ‘ 𝑘 ) ∈ ℂ ) |
131 |
81 130 114
|
fsumm1 |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 9 ) ∧ 𝑔 : ( 1 ... 3 ) ⟶ ℙ ) → Σ 𝑘 ∈ ( 1 ... 4 ) ( ( 𝑔 ∪ { 〈 4 , 3 〉 } ) ‘ 𝑘 ) = ( Σ 𝑘 ∈ ( 1 ... ( 4 − 1 ) ) ( ( 𝑔 ∪ { 〈 4 , 3 〉 } ) ‘ 𝑘 ) + ( ( 𝑔 ∪ { 〈 4 , 3 〉 } ) ‘ 4 ) ) ) |
132 |
131
|
adantr |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 9 ) ∧ 𝑔 : ( 1 ... 3 ) ⟶ ℙ ) ∧ ( 𝑁 − 3 ) = Σ 𝑘 ∈ ( 1 ... 3 ) ( 𝑔 ‘ 𝑘 ) ) → Σ 𝑘 ∈ ( 1 ... 4 ) ( ( 𝑔 ∪ { 〈 4 , 3 〉 } ) ‘ 𝑘 ) = ( Σ 𝑘 ∈ ( 1 ... ( 4 − 1 ) ) ( ( 𝑔 ∪ { 〈 4 , 3 〉 } ) ‘ 𝑘 ) + ( ( 𝑔 ∪ { 〈 4 , 3 〉 } ) ‘ 4 ) ) ) |
133 |
42
|
eqcomi |
⊢ 3 = ( 4 − 1 ) |
134 |
133
|
oveq2i |
⊢ ( 1 ... 3 ) = ( 1 ... ( 4 − 1 ) ) |
135 |
134
|
a1i |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 9 ) ∧ 𝑔 : ( 1 ... 3 ) ⟶ ℙ ) → ( 1 ... 3 ) = ( 1 ... ( 4 − 1 ) ) ) |
136 |
102
|
adantl |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 9 ) ∧ 𝑔 : ( 1 ... 3 ) ⟶ ℙ ) ∧ 𝑘 ∈ ( 1 ... 3 ) ) → 4 ≠ 𝑘 ) |
137 |
136 104
|
syl |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 9 ) ∧ 𝑔 : ( 1 ... 3 ) ⟶ ℙ ) ∧ 𝑘 ∈ ( 1 ... 3 ) ) → ( ( 𝑔 ∪ { 〈 4 , 3 〉 } ) ‘ 𝑘 ) = ( 𝑔 ‘ 𝑘 ) ) |
138 |
137
|
eqcomd |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 9 ) ∧ 𝑔 : ( 1 ... 3 ) ⟶ ℙ ) ∧ 𝑘 ∈ ( 1 ... 3 ) ) → ( 𝑔 ‘ 𝑘 ) = ( ( 𝑔 ∪ { 〈 4 , 3 〉 } ) ‘ 𝑘 ) ) |
139 |
135 138
|
sumeq12dv |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 9 ) ∧ 𝑔 : ( 1 ... 3 ) ⟶ ℙ ) → Σ 𝑘 ∈ ( 1 ... 3 ) ( 𝑔 ‘ 𝑘 ) = Σ 𝑘 ∈ ( 1 ... ( 4 − 1 ) ) ( ( 𝑔 ∪ { 〈 4 , 3 〉 } ) ‘ 𝑘 ) ) |
140 |
139
|
eqeq2d |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 9 ) ∧ 𝑔 : ( 1 ... 3 ) ⟶ ℙ ) → ( ( 𝑁 − 3 ) = Σ 𝑘 ∈ ( 1 ... 3 ) ( 𝑔 ‘ 𝑘 ) ↔ ( 𝑁 − 3 ) = Σ 𝑘 ∈ ( 1 ... ( 4 − 1 ) ) ( ( 𝑔 ∪ { 〈 4 , 3 〉 } ) ‘ 𝑘 ) ) ) |
141 |
140
|
biimpa |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 9 ) ∧ 𝑔 : ( 1 ... 3 ) ⟶ ℙ ) ∧ ( 𝑁 − 3 ) = Σ 𝑘 ∈ ( 1 ... 3 ) ( 𝑔 ‘ 𝑘 ) ) → ( 𝑁 − 3 ) = Σ 𝑘 ∈ ( 1 ... ( 4 − 1 ) ) ( ( 𝑔 ∪ { 〈 4 , 3 〉 } ) ‘ 𝑘 ) ) |
142 |
141
|
eqcomd |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 9 ) ∧ 𝑔 : ( 1 ... 3 ) ⟶ ℙ ) ∧ ( 𝑁 − 3 ) = Σ 𝑘 ∈ ( 1 ... 3 ) ( 𝑔 ‘ 𝑘 ) ) → Σ 𝑘 ∈ ( 1 ... ( 4 − 1 ) ) ( ( 𝑔 ∪ { 〈 4 , 3 〉 } ) ‘ 𝑘 ) = ( 𝑁 − 3 ) ) |
143 |
142
|
oveq1d |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 9 ) ∧ 𝑔 : ( 1 ... 3 ) ⟶ ℙ ) ∧ ( 𝑁 − 3 ) = Σ 𝑘 ∈ ( 1 ... 3 ) ( 𝑔 ‘ 𝑘 ) ) → ( Σ 𝑘 ∈ ( 1 ... ( 4 − 1 ) ) ( ( 𝑔 ∪ { 〈 4 , 3 〉 } ) ‘ 𝑘 ) + ( ( 𝑔 ∪ { 〈 4 , 3 〉 } ) ‘ 4 ) ) = ( ( 𝑁 − 3 ) + ( ( 𝑔 ∪ { 〈 4 , 3 〉 } ) ‘ 4 ) ) ) |
144 |
31
|
a1i |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 9 ) ∧ 𝑔 : ( 1 ... 3 ) ⟶ ℙ ) → 4 ∈ ℤ ) |
145 |
7
|
a1i |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 9 ) ∧ 𝑔 : ( 1 ... 3 ) ⟶ ℙ ) → 3 ∈ ℤ ) |
146 |
120
|
adantl |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 9 ) ∧ 𝑔 : ( 1 ... 3 ) ⟶ ℙ ) → ¬ 4 ∈ dom 𝑔 ) |
147 |
144 145 146 121
|
syl3anc |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 9 ) ∧ 𝑔 : ( 1 ... 3 ) ⟶ ℙ ) → ( ( 𝑔 ∪ { 〈 4 , 3 〉 } ) ‘ 4 ) = 3 ) |
148 |
147
|
oveq2d |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 9 ) ∧ 𝑔 : ( 1 ... 3 ) ⟶ ℙ ) → ( ( 𝑁 − 3 ) + ( ( 𝑔 ∪ { 〈 4 , 3 〉 } ) ‘ 4 ) ) = ( ( 𝑁 − 3 ) + 3 ) ) |
149 |
|
eluzelcn |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 9 ) → 𝑁 ∈ ℂ ) |
150 |
37
|
a1i |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 9 ) → 3 ∈ ℂ ) |
151 |
149 150
|
npcand |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 9 ) → ( ( 𝑁 − 3 ) + 3 ) = 𝑁 ) |
152 |
151
|
adantr |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 9 ) ∧ 𝑔 : ( 1 ... 3 ) ⟶ ℙ ) → ( ( 𝑁 − 3 ) + 3 ) = 𝑁 ) |
153 |
148 152
|
eqtrd |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 9 ) ∧ 𝑔 : ( 1 ... 3 ) ⟶ ℙ ) → ( ( 𝑁 − 3 ) + ( ( 𝑔 ∪ { 〈 4 , 3 〉 } ) ‘ 4 ) ) = 𝑁 ) |
154 |
153
|
adantr |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 9 ) ∧ 𝑔 : ( 1 ... 3 ) ⟶ ℙ ) ∧ ( 𝑁 − 3 ) = Σ 𝑘 ∈ ( 1 ... 3 ) ( 𝑔 ‘ 𝑘 ) ) → ( ( 𝑁 − 3 ) + ( ( 𝑔 ∪ { 〈 4 , 3 〉 } ) ‘ 4 ) ) = 𝑁 ) |
155 |
132 143 154
|
3eqtrrd |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 9 ) ∧ 𝑔 : ( 1 ... 3 ) ⟶ ℙ ) ∧ ( 𝑁 − 3 ) = Σ 𝑘 ∈ ( 1 ... 3 ) ( 𝑔 ‘ 𝑘 ) ) → 𝑁 = Σ 𝑘 ∈ ( 1 ... 4 ) ( ( 𝑔 ∪ { 〈 4 , 3 〉 } ) ‘ 𝑘 ) ) |
156 |
75 80 155
|
rspcedvd |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 9 ) ∧ 𝑔 : ( 1 ... 3 ) ⟶ ℙ ) ∧ ( 𝑁 − 3 ) = Σ 𝑘 ∈ ( 1 ... 3 ) ( 𝑔 ‘ 𝑘 ) ) → ∃ 𝑓 ∈ ( ℙ ↑m ( 1 ... 4 ) ) 𝑁 = Σ 𝑘 ∈ ( 1 ... 4 ) ( 𝑓 ‘ 𝑘 ) ) |
157 |
156
|
ex |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 9 ) ∧ 𝑔 : ( 1 ... 3 ) ⟶ ℙ ) → ( ( 𝑁 − 3 ) = Σ 𝑘 ∈ ( 1 ... 3 ) ( 𝑔 ‘ 𝑘 ) → ∃ 𝑓 ∈ ( ℙ ↑m ( 1 ... 4 ) ) 𝑁 = Σ 𝑘 ∈ ( 1 ... 4 ) ( 𝑓 ‘ 𝑘 ) ) ) |
158 |
157
|
expcom |
⊢ ( 𝑔 : ( 1 ... 3 ) ⟶ ℙ → ( 𝑁 ∈ ( ℤ≥ ‘ 9 ) → ( ( 𝑁 − 3 ) = Σ 𝑘 ∈ ( 1 ... 3 ) ( 𝑔 ‘ 𝑘 ) → ∃ 𝑓 ∈ ( ℙ ↑m ( 1 ... 4 ) ) 𝑁 = Σ 𝑘 ∈ ( 1 ... 4 ) ( 𝑓 ‘ 𝑘 ) ) ) ) |
159 |
|
elmapi |
⊢ ( 𝑔 ∈ ( ℙ ↑m ( 1 ... 3 ) ) → 𝑔 : ( 1 ... 3 ) ⟶ ℙ ) |
160 |
158 159
|
syl11 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 9 ) → ( 𝑔 ∈ ( ℙ ↑m ( 1 ... 3 ) ) → ( ( 𝑁 − 3 ) = Σ 𝑘 ∈ ( 1 ... 3 ) ( 𝑔 ‘ 𝑘 ) → ∃ 𝑓 ∈ ( ℙ ↑m ( 1 ... 4 ) ) 𝑁 = Σ 𝑘 ∈ ( 1 ... 4 ) ( 𝑓 ‘ 𝑘 ) ) ) ) |
161 |
160
|
rexlimdv |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 9 ) → ( ∃ 𝑔 ∈ ( ℙ ↑m ( 1 ... 3 ) ) ( 𝑁 − 3 ) = Σ 𝑘 ∈ ( 1 ... 3 ) ( 𝑔 ‘ 𝑘 ) → ∃ 𝑓 ∈ ( ℙ ↑m ( 1 ... 4 ) ) 𝑁 = Σ 𝑘 ∈ ( 1 ... 4 ) ( 𝑓 ‘ 𝑘 ) ) ) |
162 |
161
|
adantr |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 9 ) ∧ 𝑁 ∈ Even ) → ( ∃ 𝑔 ∈ ( ℙ ↑m ( 1 ... 3 ) ) ( 𝑁 − 3 ) = Σ 𝑘 ∈ ( 1 ... 3 ) ( 𝑔 ‘ 𝑘 ) → ∃ 𝑓 ∈ ( ℙ ↑m ( 1 ... 4 ) ) 𝑁 = Σ 𝑘 ∈ ( 1 ... 4 ) ( 𝑓 ‘ 𝑘 ) ) ) |
163 |
162
|
ad3antlr |
⊢ ( ( ( ( ∀ 𝑚 ∈ Odd ( 5 < 𝑚 → 𝑚 ∈ GoldbachOddW ) ∧ ( 𝑁 ∈ ( ℤ≥ ‘ 9 ) ∧ 𝑁 ∈ Even ) ) ∧ 𝑜 ∈ GoldbachOddW ) ∧ 𝑁 = ( 𝑜 + 3 ) ) → ( ∃ 𝑔 ∈ ( ℙ ↑m ( 1 ... 3 ) ) ( 𝑁 − 3 ) = Σ 𝑘 ∈ ( 1 ... 3 ) ( 𝑔 ‘ 𝑘 ) → ∃ 𝑓 ∈ ( ℙ ↑m ( 1 ... 4 ) ) 𝑁 = Σ 𝑘 ∈ ( 1 ... 4 ) ( 𝑓 ‘ 𝑘 ) ) ) |
164 |
29 163
|
mpd |
⊢ ( ( ( ( ∀ 𝑚 ∈ Odd ( 5 < 𝑚 → 𝑚 ∈ GoldbachOddW ) ∧ ( 𝑁 ∈ ( ℤ≥ ‘ 9 ) ∧ 𝑁 ∈ Even ) ) ∧ 𝑜 ∈ GoldbachOddW ) ∧ 𝑁 = ( 𝑜 + 3 ) ) → ∃ 𝑓 ∈ ( ℙ ↑m ( 1 ... 4 ) ) 𝑁 = Σ 𝑘 ∈ ( 1 ... 4 ) ( 𝑓 ‘ 𝑘 ) ) |
165 |
164
|
rexlimdva2 |
⊢ ( ( ∀ 𝑚 ∈ Odd ( 5 < 𝑚 → 𝑚 ∈ GoldbachOddW ) ∧ ( 𝑁 ∈ ( ℤ≥ ‘ 9 ) ∧ 𝑁 ∈ Even ) ) → ( ∃ 𝑜 ∈ GoldbachOddW 𝑁 = ( 𝑜 + 3 ) → ∃ 𝑓 ∈ ( ℙ ↑m ( 1 ... 4 ) ) 𝑁 = Σ 𝑘 ∈ ( 1 ... 4 ) ( 𝑓 ‘ 𝑘 ) ) ) |
166 |
2 165
|
mpd |
⊢ ( ( ∀ 𝑚 ∈ Odd ( 5 < 𝑚 → 𝑚 ∈ GoldbachOddW ) ∧ ( 𝑁 ∈ ( ℤ≥ ‘ 9 ) ∧ 𝑁 ∈ Even ) ) → ∃ 𝑓 ∈ ( ℙ ↑m ( 1 ... 4 ) ) 𝑁 = Σ 𝑘 ∈ ( 1 ... 4 ) ( 𝑓 ‘ 𝑘 ) ) |
167 |
166
|
ex |
⊢ ( ∀ 𝑚 ∈ Odd ( 5 < 𝑚 → 𝑚 ∈ GoldbachOddW ) → ( ( 𝑁 ∈ ( ℤ≥ ‘ 9 ) ∧ 𝑁 ∈ Even ) → ∃ 𝑓 ∈ ( ℙ ↑m ( 1 ... 4 ) ) 𝑁 = Σ 𝑘 ∈ ( 1 ... 4 ) ( 𝑓 ‘ 𝑘 ) ) ) |