Metamath Proof Explorer


Theorem nnsum4primeseven

Description: If the (weak) ternary Goldbach conjecture is valid, then every even integer greater than 8 is the sum of 4 primes. (Contributed by AV, 25-Jul-2020)

Ref Expression
Assertion nnsum4primeseven m Odd 5 < m m GoldbachOddW N 9 N Even f 1 4 N = k = 1 4 f k

Proof

Step Hyp Ref Expression
1 evengpop3 m Odd 5 < m m GoldbachOddW N 9 N Even o GoldbachOddW N = o + 3
2 1 imp m Odd 5 < m m GoldbachOddW N 9 N Even o GoldbachOddW N = o + 3
3 simplll m Odd 5 < m m GoldbachOddW N 9 N Even o GoldbachOddW N = o + 3 m Odd 5 < m m GoldbachOddW
4 6nn 6
5 4 nnzi 6
6 5 a1i N 9 6
7 3z 3
8 7 a1i N 9 3
9 6p3e9 6 + 3 = 9
10 9 eqcomi 9 = 6 + 3
11 10 fveq2i 9 = 6 + 3
12 11 eleq2i N 9 N 6 + 3
13 12 biimpi N 9 N 6 + 3
14 eluzsub 6 3 N 6 + 3 N 3 6
15 6 8 13 14 syl3anc N 9 N 3 6
16 15 adantr N 9 N Even N 3 6
17 16 ad3antlr m Odd 5 < m m GoldbachOddW N 9 N Even o GoldbachOddW N = o + 3 N 3 6
18 3odd 3 Odd
19 18 a1i N 9 3 Odd
20 19 anim1i N 9 N Even 3 Odd N Even
21 20 adantl m Odd 5 < m m GoldbachOddW N 9 N Even 3 Odd N Even
22 21 ancomd m Odd 5 < m m GoldbachOddW N 9 N Even N Even 3 Odd
23 22 adantr m Odd 5 < m m GoldbachOddW N 9 N Even o GoldbachOddW N Even 3 Odd
24 23 adantr m Odd 5 < m m GoldbachOddW N 9 N Even o GoldbachOddW N = o + 3 N Even 3 Odd
25 emoo N Even 3 Odd N 3 Odd
26 24 25 syl m Odd 5 < m m GoldbachOddW N 9 N Even o GoldbachOddW N = o + 3 N 3 Odd
27 nnsum4primesodd m Odd 5 < m m GoldbachOddW N 3 6 N 3 Odd g 1 3 N 3 = k = 1 3 g k
28 27 imp m Odd 5 < m m GoldbachOddW N 3 6 N 3 Odd g 1 3 N 3 = k = 1 3 g k
29 3 17 26 28 syl12anc m Odd 5 < m m GoldbachOddW N 9 N Even o GoldbachOddW N = o + 3 g 1 3 N 3 = k = 1 3 g k
30 simpr N 9 g : 1 3 g : 1 3
31 4z 4
32 fzonel ¬ 4 1 ..^ 4
33 fzoval 4 1 ..^ 4 = 1 4 1
34 31 33 ax-mp 1 ..^ 4 = 1 4 1
35 4cn 4
36 ax-1cn 1
37 3cn 3
38 35 36 37 3pm3.2i 4 1 3
39 3p1e4 3 + 1 = 4
40 subadd2 4 1 3 4 1 = 3 3 + 1 = 4
41 39 40 mpbiri 4 1 3 4 1 = 3
42 38 41 ax-mp 4 1 = 3
43 42 oveq2i 1 4 1 = 1 3
44 34 43 eqtri 1 ..^ 4 = 1 3
45 44 eqcomi 1 3 = 1 ..^ 4
46 45 eleq2i 4 1 3 4 1 ..^ 4
47 32 46 mtbir ¬ 4 1 3
48 31 47 pm3.2i 4 ¬ 4 1 3
49 48 a1i N 9 g : 1 3 4 ¬ 4 1 3
50 3prm 3
51 50 a1i N 9 g : 1 3 3
52 fsnunf g : 1 3 4 ¬ 4 1 3 3 g 4 3 : 1 3 4
53 30 49 51 52 syl3anc N 9 g : 1 3 g 4 3 : 1 3 4
54 fzval3 4 1 4 = 1 ..^ 4 + 1
55 31 54 ax-mp 1 4 = 1 ..^ 4 + 1
56 1z 1
57 1re 1
58 4re 4
59 1lt4 1 < 4
60 57 58 59 ltleii 1 4
61 eluz2 4 1 1 4 1 4
62 56 31 60 61 mpbir3an 4 1
63 fzosplitsn 4 1 1 ..^ 4 + 1 = 1 ..^ 4 4
64 62 63 ax-mp 1 ..^ 4 + 1 = 1 ..^ 4 4
65 44 uneq1i 1 ..^ 4 4 = 1 3 4
66 55 64 65 3eqtri 1 4 = 1 3 4
67 66 feq2i g 4 3 : 1 4 g 4 3 : 1 3 4
68 53 67 sylibr N 9 g : 1 3 g 4 3 : 1 4
69 prmex V
70 ovex 1 4 V
71 69 70 pm3.2i V 1 4 V
72 elmapg V 1 4 V g 4 3 1 4 g 4 3 : 1 4
73 71 72 mp1i N 9 g : 1 3 g 4 3 1 4 g 4 3 : 1 4
74 68 73 mpbird N 9 g : 1 3 g 4 3 1 4
75 74 adantr N 9 g : 1 3 N 3 = k = 1 3 g k g 4 3 1 4
76 fveq1 f = g 4 3 f k = g 4 3 k
77 76 adantr f = g 4 3 k 1 4 f k = g 4 3 k
78 77 sumeq2dv f = g 4 3 k = 1 4 f k = k = 1 4 g 4 3 k
79 78 eqeq2d f = g 4 3 N = k = 1 4 f k N = k = 1 4 g 4 3 k
80 79 adantl N 9 g : 1 3 N 3 = k = 1 3 g k f = g 4 3 N = k = 1 4 f k N = k = 1 4 g 4 3 k
81 62 a1i N 9 g : 1 3 4 1
82 66 eleq2i k 1 4 k 1 3 4
83 elun k 1 3 4 k 1 3 k 4
84 velsn k 4 k = 4
85 84 orbi2i k 1 3 k 4 k 1 3 k = 4
86 82 83 85 3bitri k 1 4 k 1 3 k = 4
87 elfz2 k 1 3 1 3 k 1 k k 3
88 3re 3
89 88 58 pm3.2i 3 4
90 3lt4 3 < 4
91 ltnle 3 4 3 < 4 ¬ 4 3
92 90 91 mpbii 3 4 ¬ 4 3
93 89 92 ax-mp ¬ 4 3
94 breq1 k = 4 k 3 4 3
95 94 eqcoms 4 = k k 3 4 3
96 93 95 mtbiri 4 = k ¬ k 3
97 96 a1i k 4 = k ¬ k 3
98 97 necon2ad k k 3 4 k
99 98 adantld k 1 k k 3 4 k
100 99 3ad2ant3 1 3 k 1 k k 3 4 k
101 100 imp 1 3 k 1 k k 3 4 k
102 87 101 sylbi k 1 3 4 k
103 102 adantr k 1 3 g : 1 3 4 k
104 fvunsn 4 k g 4 3 k = g k
105 103 104 syl k 1 3 g : 1 3 g 4 3 k = g k
106 ffvelrn g : 1 3 k 1 3 g k
107 106 ancoms k 1 3 g : 1 3 g k
108 prmz g k g k
109 107 108 syl k 1 3 g : 1 3 g k
110 109 zcnd k 1 3 g : 1 3 g k
111 105 110 eqeltrd k 1 3 g : 1 3 g 4 3 k
112 111 ex k 1 3 g : 1 3 g 4 3 k
113 112 adantld k 1 3 N 9 g : 1 3 g 4 3 k
114 fveq2 k = 4 g 4 3 k = g 4 3 4
115 31 a1i g : 1 3 4
116 7 a1i g : 1 3 3
117 fdm g : 1 3 dom g = 1 3
118 eleq2 dom g = 1 3 4 dom g 4 1 3
119 47 118 mtbiri dom g = 1 3 ¬ 4 dom g
120 117 119 syl g : 1 3 ¬ 4 dom g
121 fsnunfv 4 3 ¬ 4 dom g g 4 3 4 = 3
122 115 116 120 121 syl3anc g : 1 3 g 4 3 4 = 3
123 122 adantl N 9 g : 1 3 g 4 3 4 = 3
124 114 123 sylan9eq k = 4 N 9 g : 1 3 g 4 3 k = 3
125 124 37 eqeltrdi k = 4 N 9 g : 1 3 g 4 3 k
126 125 ex k = 4 N 9 g : 1 3 g 4 3 k
127 113 126 jaoi k 1 3 k = 4 N 9 g : 1 3 g 4 3 k
128 127 com12 N 9 g : 1 3 k 1 3 k = 4 g 4 3 k
129 86 128 syl5bi N 9 g : 1 3 k 1 4 g 4 3 k
130 129 imp N 9 g : 1 3 k 1 4 g 4 3 k
131 81 130 114 fsumm1 N 9 g : 1 3 k = 1 4 g 4 3 k = k = 1 4 1 g 4 3 k + g 4 3 4
132 131 adantr N 9 g : 1 3 N 3 = k = 1 3 g k k = 1 4 g 4 3 k = k = 1 4 1 g 4 3 k + g 4 3 4
133 42 eqcomi 3 = 4 1
134 133 oveq2i 1 3 = 1 4 1
135 134 a1i N 9 g : 1 3 1 3 = 1 4 1
136 102 adantl N 9 g : 1 3 k 1 3 4 k
137 136 104 syl N 9 g : 1 3 k 1 3 g 4 3 k = g k
138 137 eqcomd N 9 g : 1 3 k 1 3 g k = g 4 3 k
139 135 138 sumeq12dv N 9 g : 1 3 k = 1 3 g k = k = 1 4 1 g 4 3 k
140 139 eqeq2d N 9 g : 1 3 N 3 = k = 1 3 g k N 3 = k = 1 4 1 g 4 3 k
141 140 biimpa N 9 g : 1 3 N 3 = k = 1 3 g k N 3 = k = 1 4 1 g 4 3 k
142 141 eqcomd N 9 g : 1 3 N 3 = k = 1 3 g k k = 1 4 1 g 4 3 k = N 3
143 142 oveq1d N 9 g : 1 3 N 3 = k = 1 3 g k k = 1 4 1 g 4 3 k + g 4 3 4 = N - 3 + g 4 3 4
144 31 a1i N 9 g : 1 3 4
145 7 a1i N 9 g : 1 3 3
146 120 adantl N 9 g : 1 3 ¬ 4 dom g
147 144 145 146 121 syl3anc N 9 g : 1 3 g 4 3 4 = 3
148 147 oveq2d N 9 g : 1 3 N - 3 + g 4 3 4 = N - 3 + 3
149 eluzelcn N 9 N
150 37 a1i N 9 3
151 149 150 npcand N 9 N - 3 + 3 = N
152 151 adantr N 9 g : 1 3 N - 3 + 3 = N
153 148 152 eqtrd N 9 g : 1 3 N - 3 + g 4 3 4 = N
154 153 adantr N 9 g : 1 3 N 3 = k = 1 3 g k N - 3 + g 4 3 4 = N
155 132 143 154 3eqtrrd N 9 g : 1 3 N 3 = k = 1 3 g k N = k = 1 4 g 4 3 k
156 75 80 155 rspcedvd N 9 g : 1 3 N 3 = k = 1 3 g k f 1 4 N = k = 1 4 f k
157 156 ex N 9 g : 1 3 N 3 = k = 1 3 g k f 1 4 N = k = 1 4 f k
158 157 expcom g : 1 3 N 9 N 3 = k = 1 3 g k f 1 4 N = k = 1 4 f k
159 elmapi g 1 3 g : 1 3
160 158 159 syl11 N 9 g 1 3 N 3 = k = 1 3 g k f 1 4 N = k = 1 4 f k
161 160 rexlimdv N 9 g 1 3 N 3 = k = 1 3 g k f 1 4 N = k = 1 4 f k
162 161 adantr N 9 N Even g 1 3 N 3 = k = 1 3 g k f 1 4 N = k = 1 4 f k
163 162 ad3antlr m Odd 5 < m m GoldbachOddW N 9 N Even o GoldbachOddW N = o + 3 g 1 3 N 3 = k = 1 3 g k f 1 4 N = k = 1 4 f k
164 29 163 mpd m Odd 5 < m m GoldbachOddW N 9 N Even o GoldbachOddW N = o + 3 f 1 4 N = k = 1 4 f k
165 164 rexlimdva2 m Odd 5 < m m GoldbachOddW N 9 N Even o GoldbachOddW N = o + 3 f 1 4 N = k = 1 4 f k
166 2 165 mpd m Odd 5 < m m GoldbachOddW N 9 N Even f 1 4 N = k = 1 4 f k
167 166 ex m Odd 5 < m m GoldbachOddW N 9 N Even f 1 4 N = k = 1 4 f k