Step |
Hyp |
Ref |
Expression |
1 |
|
evengpop3 |
|
2 |
1
|
imp |
|
3 |
|
simplll |
|
4 |
|
6nn |
|
5 |
4
|
nnzi |
|
6 |
5
|
a1i |
|
7 |
|
3z |
|
8 |
7
|
a1i |
|
9 |
|
6p3e9 |
|
10 |
9
|
eqcomi |
|
11 |
10
|
fveq2i |
|
12 |
11
|
eleq2i |
|
13 |
12
|
biimpi |
|
14 |
|
eluzsub |
|
15 |
6 8 13 14
|
syl3anc |
|
16 |
15
|
adantr |
|
17 |
16
|
ad3antlr |
|
18 |
|
3odd |
|
19 |
18
|
a1i |
|
20 |
19
|
anim1i |
|
21 |
20
|
adantl |
|
22 |
21
|
ancomd |
|
23 |
22
|
adantr |
|
24 |
23
|
adantr |
|
25 |
|
emoo |
|
26 |
24 25
|
syl |
|
27 |
|
nnsum4primesodd |
|
28 |
27
|
imp |
|
29 |
3 17 26 28
|
syl12anc |
|
30 |
|
simpr |
|
31 |
|
4z |
|
32 |
|
fzonel |
|
33 |
|
fzoval |
|
34 |
31 33
|
ax-mp |
|
35 |
|
4cn |
|
36 |
|
ax-1cn |
|
37 |
|
3cn |
|
38 |
35 36 37
|
3pm3.2i |
|
39 |
|
3p1e4 |
|
40 |
|
subadd2 |
|
41 |
39 40
|
mpbiri |
|
42 |
38 41
|
ax-mp |
|
43 |
42
|
oveq2i |
|
44 |
34 43
|
eqtri |
|
45 |
44
|
eqcomi |
|
46 |
45
|
eleq2i |
|
47 |
32 46
|
mtbir |
|
48 |
31 47
|
pm3.2i |
|
49 |
48
|
a1i |
|
50 |
|
3prm |
|
51 |
50
|
a1i |
|
52 |
|
fsnunf |
|
53 |
30 49 51 52
|
syl3anc |
|
54 |
|
fzval3 |
|
55 |
31 54
|
ax-mp |
|
56 |
|
1z |
|
57 |
|
1re |
|
58 |
|
4re |
|
59 |
|
1lt4 |
|
60 |
57 58 59
|
ltleii |
|
61 |
|
eluz2 |
|
62 |
56 31 60 61
|
mpbir3an |
|
63 |
|
fzosplitsn |
|
64 |
62 63
|
ax-mp |
|
65 |
44
|
uneq1i |
|
66 |
55 64 65
|
3eqtri |
|
67 |
66
|
feq2i |
|
68 |
53 67
|
sylibr |
|
69 |
|
prmex |
|
70 |
|
ovex |
|
71 |
69 70
|
pm3.2i |
|
72 |
|
elmapg |
|
73 |
71 72
|
mp1i |
|
74 |
68 73
|
mpbird |
|
75 |
74
|
adantr |
|
76 |
|
fveq1 |
|
77 |
76
|
adantr |
|
78 |
77
|
sumeq2dv |
|
79 |
78
|
eqeq2d |
|
80 |
79
|
adantl |
|
81 |
62
|
a1i |
|
82 |
66
|
eleq2i |
|
83 |
|
elun |
|
84 |
|
velsn |
|
85 |
84
|
orbi2i |
|
86 |
82 83 85
|
3bitri |
|
87 |
|
elfz2 |
|
88 |
|
3re |
|
89 |
88 58
|
pm3.2i |
|
90 |
|
3lt4 |
|
91 |
|
ltnle |
|
92 |
90 91
|
mpbii |
|
93 |
89 92
|
ax-mp |
|
94 |
|
breq1 |
|
95 |
94
|
eqcoms |
|
96 |
93 95
|
mtbiri |
|
97 |
96
|
a1i |
|
98 |
97
|
necon2ad |
|
99 |
98
|
adantld |
|
100 |
99
|
3ad2ant3 |
|
101 |
100
|
imp |
|
102 |
87 101
|
sylbi |
|
103 |
102
|
adantr |
|
104 |
|
fvunsn |
|
105 |
103 104
|
syl |
|
106 |
|
ffvelrn |
|
107 |
106
|
ancoms |
|
108 |
|
prmz |
|
109 |
107 108
|
syl |
|
110 |
109
|
zcnd |
|
111 |
105 110
|
eqeltrd |
|
112 |
111
|
ex |
|
113 |
112
|
adantld |
|
114 |
|
fveq2 |
|
115 |
31
|
a1i |
|
116 |
7
|
a1i |
|
117 |
|
fdm |
|
118 |
|
eleq2 |
|
119 |
47 118
|
mtbiri |
|
120 |
117 119
|
syl |
|
121 |
|
fsnunfv |
|
122 |
115 116 120 121
|
syl3anc |
|
123 |
122
|
adantl |
|
124 |
114 123
|
sylan9eq |
|
125 |
124 37
|
eqeltrdi |
|
126 |
125
|
ex |
|
127 |
113 126
|
jaoi |
|
128 |
127
|
com12 |
|
129 |
86 128
|
syl5bi |
|
130 |
129
|
imp |
|
131 |
81 130 114
|
fsumm1 |
|
132 |
131
|
adantr |
|
133 |
42
|
eqcomi |
|
134 |
133
|
oveq2i |
|
135 |
134
|
a1i |
|
136 |
102
|
adantl |
|
137 |
136 104
|
syl |
|
138 |
137
|
eqcomd |
|
139 |
135 138
|
sumeq12dv |
|
140 |
139
|
eqeq2d |
|
141 |
140
|
biimpa |
|
142 |
141
|
eqcomd |
|
143 |
142
|
oveq1d |
|
144 |
31
|
a1i |
|
145 |
7
|
a1i |
|
146 |
120
|
adantl |
|
147 |
144 145 146 121
|
syl3anc |
|
148 |
147
|
oveq2d |
|
149 |
|
eluzelcn |
|
150 |
37
|
a1i |
|
151 |
149 150
|
npcand |
|
152 |
151
|
adantr |
|
153 |
148 152
|
eqtrd |
|
154 |
153
|
adantr |
|
155 |
132 143 154
|
3eqtrrd |
|
156 |
75 80 155
|
rspcedvd |
|
157 |
156
|
ex |
|
158 |
157
|
expcom |
|
159 |
|
elmapi |
|
160 |
158 159
|
syl11 |
|
161 |
160
|
rexlimdv |
|
162 |
161
|
adantr |
|
163 |
162
|
ad3antlr |
|
164 |
29 163
|
mpd |
|
165 |
164
|
rexlimdva2 |
|
166 |
2 165
|
mpd |
|
167 |
166
|
ex |
|