| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simplll |
⊢ ( ( ( ( ∀ 𝑚 ∈ Odd ( 7 < 𝑚 → 𝑚 ∈ GoldbachOdd ) ∧ ( 𝑁 ∈ ( ℤ≥ ‘ ; 1 2 ) ∧ 𝑁 ∈ Even ) ) ∧ 𝑜 ∈ GoldbachOdd ) ∧ 𝑁 = ( 𝑜 + 3 ) ) → ∀ 𝑚 ∈ Odd ( 7 < 𝑚 → 𝑚 ∈ GoldbachOdd ) ) |
| 2 |
|
8nn |
⊢ 8 ∈ ℕ |
| 3 |
2
|
nnzi |
⊢ 8 ∈ ℤ |
| 4 |
3
|
a1i |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ ; 1 2 ) → 8 ∈ ℤ ) |
| 5 |
|
3z |
⊢ 3 ∈ ℤ |
| 6 |
5
|
a1i |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ ; 1 2 ) → 3 ∈ ℤ ) |
| 7 |
4 6
|
zaddcld |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ ; 1 2 ) → ( 8 + 3 ) ∈ ℤ ) |
| 8 |
|
eluzelz |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ ; 1 2 ) → 𝑁 ∈ ℤ ) |
| 9 |
|
eluz2 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ ; 1 2 ) ↔ ( ; 1 2 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ; 1 2 ≤ 𝑁 ) ) |
| 10 |
|
8p4e12 |
⊢ ( 8 + 4 ) = ; 1 2 |
| 11 |
10
|
breq1i |
⊢ ( ( 8 + 4 ) ≤ 𝑁 ↔ ; 1 2 ≤ 𝑁 ) |
| 12 |
|
1nn0 |
⊢ 1 ∈ ℕ0 |
| 13 |
|
2nn |
⊢ 2 ∈ ℕ |
| 14 |
|
1lt2 |
⊢ 1 < 2 |
| 15 |
12 12 13 14
|
declt |
⊢ ; 1 1 < ; 1 2 |
| 16 |
|
8p3e11 |
⊢ ( 8 + 3 ) = ; 1 1 |
| 17 |
15 16 10
|
3brtr4i |
⊢ ( 8 + 3 ) < ( 8 + 4 ) |
| 18 |
|
8re |
⊢ 8 ∈ ℝ |
| 19 |
18
|
a1i |
⊢ ( 𝑁 ∈ ℤ → 8 ∈ ℝ ) |
| 20 |
|
3re |
⊢ 3 ∈ ℝ |
| 21 |
20
|
a1i |
⊢ ( 𝑁 ∈ ℤ → 3 ∈ ℝ ) |
| 22 |
19 21
|
readdcld |
⊢ ( 𝑁 ∈ ℤ → ( 8 + 3 ) ∈ ℝ ) |
| 23 |
|
4re |
⊢ 4 ∈ ℝ |
| 24 |
23
|
a1i |
⊢ ( 𝑁 ∈ ℤ → 4 ∈ ℝ ) |
| 25 |
19 24
|
readdcld |
⊢ ( 𝑁 ∈ ℤ → ( 8 + 4 ) ∈ ℝ ) |
| 26 |
|
zre |
⊢ ( 𝑁 ∈ ℤ → 𝑁 ∈ ℝ ) |
| 27 |
|
ltleletr |
⊢ ( ( ( 8 + 3 ) ∈ ℝ ∧ ( 8 + 4 ) ∈ ℝ ∧ 𝑁 ∈ ℝ ) → ( ( ( 8 + 3 ) < ( 8 + 4 ) ∧ ( 8 + 4 ) ≤ 𝑁 ) → ( 8 + 3 ) ≤ 𝑁 ) ) |
| 28 |
22 25 26 27
|
syl3anc |
⊢ ( 𝑁 ∈ ℤ → ( ( ( 8 + 3 ) < ( 8 + 4 ) ∧ ( 8 + 4 ) ≤ 𝑁 ) → ( 8 + 3 ) ≤ 𝑁 ) ) |
| 29 |
17 28
|
mpani |
⊢ ( 𝑁 ∈ ℤ → ( ( 8 + 4 ) ≤ 𝑁 → ( 8 + 3 ) ≤ 𝑁 ) ) |
| 30 |
11 29
|
biimtrrid |
⊢ ( 𝑁 ∈ ℤ → ( ; 1 2 ≤ 𝑁 → ( 8 + 3 ) ≤ 𝑁 ) ) |
| 31 |
30
|
imp |
⊢ ( ( 𝑁 ∈ ℤ ∧ ; 1 2 ≤ 𝑁 ) → ( 8 + 3 ) ≤ 𝑁 ) |
| 32 |
31
|
3adant1 |
⊢ ( ( ; 1 2 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ; 1 2 ≤ 𝑁 ) → ( 8 + 3 ) ≤ 𝑁 ) |
| 33 |
9 32
|
sylbi |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ ; 1 2 ) → ( 8 + 3 ) ≤ 𝑁 ) |
| 34 |
|
eluz2 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ ( 8 + 3 ) ) ↔ ( ( 8 + 3 ) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ( 8 + 3 ) ≤ 𝑁 ) ) |
| 35 |
7 8 33 34
|
syl3anbrc |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ ; 1 2 ) → 𝑁 ∈ ( ℤ≥ ‘ ( 8 + 3 ) ) ) |
| 36 |
|
eluzsub |
⊢ ( ( 8 ∈ ℤ ∧ 3 ∈ ℤ ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 8 + 3 ) ) ) → ( 𝑁 − 3 ) ∈ ( ℤ≥ ‘ 8 ) ) |
| 37 |
4 6 35 36
|
syl3anc |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ ; 1 2 ) → ( 𝑁 − 3 ) ∈ ( ℤ≥ ‘ 8 ) ) |
| 38 |
37
|
adantr |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ ; 1 2 ) ∧ 𝑁 ∈ Even ) → ( 𝑁 − 3 ) ∈ ( ℤ≥ ‘ 8 ) ) |
| 39 |
38
|
ad3antlr |
⊢ ( ( ( ( ∀ 𝑚 ∈ Odd ( 7 < 𝑚 → 𝑚 ∈ GoldbachOdd ) ∧ ( 𝑁 ∈ ( ℤ≥ ‘ ; 1 2 ) ∧ 𝑁 ∈ Even ) ) ∧ 𝑜 ∈ GoldbachOdd ) ∧ 𝑁 = ( 𝑜 + 3 ) ) → ( 𝑁 − 3 ) ∈ ( ℤ≥ ‘ 8 ) ) |
| 40 |
|
3odd |
⊢ 3 ∈ Odd |
| 41 |
40
|
a1i |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ ; 1 2 ) → 3 ∈ Odd ) |
| 42 |
41
|
anim1i |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ ; 1 2 ) ∧ 𝑁 ∈ Even ) → ( 3 ∈ Odd ∧ 𝑁 ∈ Even ) ) |
| 43 |
42
|
adantl |
⊢ ( ( ∀ 𝑚 ∈ Odd ( 7 < 𝑚 → 𝑚 ∈ GoldbachOdd ) ∧ ( 𝑁 ∈ ( ℤ≥ ‘ ; 1 2 ) ∧ 𝑁 ∈ Even ) ) → ( 3 ∈ Odd ∧ 𝑁 ∈ Even ) ) |
| 44 |
43
|
ancomd |
⊢ ( ( ∀ 𝑚 ∈ Odd ( 7 < 𝑚 → 𝑚 ∈ GoldbachOdd ) ∧ ( 𝑁 ∈ ( ℤ≥ ‘ ; 1 2 ) ∧ 𝑁 ∈ Even ) ) → ( 𝑁 ∈ Even ∧ 3 ∈ Odd ) ) |
| 45 |
44
|
adantr |
⊢ ( ( ( ∀ 𝑚 ∈ Odd ( 7 < 𝑚 → 𝑚 ∈ GoldbachOdd ) ∧ ( 𝑁 ∈ ( ℤ≥ ‘ ; 1 2 ) ∧ 𝑁 ∈ Even ) ) ∧ 𝑜 ∈ GoldbachOdd ) → ( 𝑁 ∈ Even ∧ 3 ∈ Odd ) ) |
| 46 |
45
|
adantr |
⊢ ( ( ( ( ∀ 𝑚 ∈ Odd ( 7 < 𝑚 → 𝑚 ∈ GoldbachOdd ) ∧ ( 𝑁 ∈ ( ℤ≥ ‘ ; 1 2 ) ∧ 𝑁 ∈ Even ) ) ∧ 𝑜 ∈ GoldbachOdd ) ∧ 𝑁 = ( 𝑜 + 3 ) ) → ( 𝑁 ∈ Even ∧ 3 ∈ Odd ) ) |
| 47 |
|
emoo |
⊢ ( ( 𝑁 ∈ Even ∧ 3 ∈ Odd ) → ( 𝑁 − 3 ) ∈ Odd ) |
| 48 |
46 47
|
syl |
⊢ ( ( ( ( ∀ 𝑚 ∈ Odd ( 7 < 𝑚 → 𝑚 ∈ GoldbachOdd ) ∧ ( 𝑁 ∈ ( ℤ≥ ‘ ; 1 2 ) ∧ 𝑁 ∈ Even ) ) ∧ 𝑜 ∈ GoldbachOdd ) ∧ 𝑁 = ( 𝑜 + 3 ) ) → ( 𝑁 − 3 ) ∈ Odd ) |
| 49 |
|
nnsum4primesoddALTV |
⊢ ( ∀ 𝑚 ∈ Odd ( 7 < 𝑚 → 𝑚 ∈ GoldbachOdd ) → ( ( ( 𝑁 − 3 ) ∈ ( ℤ≥ ‘ 8 ) ∧ ( 𝑁 − 3 ) ∈ Odd ) → ∃ 𝑔 ∈ ( ℙ ↑m ( 1 ... 3 ) ) ( 𝑁 − 3 ) = Σ 𝑘 ∈ ( 1 ... 3 ) ( 𝑔 ‘ 𝑘 ) ) ) |
| 50 |
49
|
imp |
⊢ ( ( ∀ 𝑚 ∈ Odd ( 7 < 𝑚 → 𝑚 ∈ GoldbachOdd ) ∧ ( ( 𝑁 − 3 ) ∈ ( ℤ≥ ‘ 8 ) ∧ ( 𝑁 − 3 ) ∈ Odd ) ) → ∃ 𝑔 ∈ ( ℙ ↑m ( 1 ... 3 ) ) ( 𝑁 − 3 ) = Σ 𝑘 ∈ ( 1 ... 3 ) ( 𝑔 ‘ 𝑘 ) ) |
| 51 |
1 39 48 50
|
syl12anc |
⊢ ( ( ( ( ∀ 𝑚 ∈ Odd ( 7 < 𝑚 → 𝑚 ∈ GoldbachOdd ) ∧ ( 𝑁 ∈ ( ℤ≥ ‘ ; 1 2 ) ∧ 𝑁 ∈ Even ) ) ∧ 𝑜 ∈ GoldbachOdd ) ∧ 𝑁 = ( 𝑜 + 3 ) ) → ∃ 𝑔 ∈ ( ℙ ↑m ( 1 ... 3 ) ) ( 𝑁 − 3 ) = Σ 𝑘 ∈ ( 1 ... 3 ) ( 𝑔 ‘ 𝑘 ) ) |
| 52 |
|
simpr |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ ; 1 2 ) ∧ 𝑔 : ( 1 ... 3 ) ⟶ ℙ ) → 𝑔 : ( 1 ... 3 ) ⟶ ℙ ) |
| 53 |
|
4z |
⊢ 4 ∈ ℤ |
| 54 |
|
fzonel |
⊢ ¬ 4 ∈ ( 1 ..^ 4 ) |
| 55 |
|
fzoval |
⊢ ( 4 ∈ ℤ → ( 1 ..^ 4 ) = ( 1 ... ( 4 − 1 ) ) ) |
| 56 |
53 55
|
ax-mp |
⊢ ( 1 ..^ 4 ) = ( 1 ... ( 4 − 1 ) ) |
| 57 |
|
4cn |
⊢ 4 ∈ ℂ |
| 58 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
| 59 |
|
3cn |
⊢ 3 ∈ ℂ |
| 60 |
|
3p1e4 |
⊢ ( 3 + 1 ) = 4 |
| 61 |
|
subadd2 |
⊢ ( ( 4 ∈ ℂ ∧ 1 ∈ ℂ ∧ 3 ∈ ℂ ) → ( ( 4 − 1 ) = 3 ↔ ( 3 + 1 ) = 4 ) ) |
| 62 |
60 61
|
mpbiri |
⊢ ( ( 4 ∈ ℂ ∧ 1 ∈ ℂ ∧ 3 ∈ ℂ ) → ( 4 − 1 ) = 3 ) |
| 63 |
57 58 59 62
|
mp3an |
⊢ ( 4 − 1 ) = 3 |
| 64 |
63
|
oveq2i |
⊢ ( 1 ... ( 4 − 1 ) ) = ( 1 ... 3 ) |
| 65 |
56 64
|
eqtri |
⊢ ( 1 ..^ 4 ) = ( 1 ... 3 ) |
| 66 |
65
|
eqcomi |
⊢ ( 1 ... 3 ) = ( 1 ..^ 4 ) |
| 67 |
66
|
eleq2i |
⊢ ( 4 ∈ ( 1 ... 3 ) ↔ 4 ∈ ( 1 ..^ 4 ) ) |
| 68 |
54 67
|
mtbir |
⊢ ¬ 4 ∈ ( 1 ... 3 ) |
| 69 |
53 68
|
pm3.2i |
⊢ ( 4 ∈ ℤ ∧ ¬ 4 ∈ ( 1 ... 3 ) ) |
| 70 |
69
|
a1i |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ ; 1 2 ) ∧ 𝑔 : ( 1 ... 3 ) ⟶ ℙ ) → ( 4 ∈ ℤ ∧ ¬ 4 ∈ ( 1 ... 3 ) ) ) |
| 71 |
|
3prm |
⊢ 3 ∈ ℙ |
| 72 |
71
|
a1i |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ ; 1 2 ) ∧ 𝑔 : ( 1 ... 3 ) ⟶ ℙ ) → 3 ∈ ℙ ) |
| 73 |
|
fsnunf |
⊢ ( ( 𝑔 : ( 1 ... 3 ) ⟶ ℙ ∧ ( 4 ∈ ℤ ∧ ¬ 4 ∈ ( 1 ... 3 ) ) ∧ 3 ∈ ℙ ) → ( 𝑔 ∪ { 〈 4 , 3 〉 } ) : ( ( 1 ... 3 ) ∪ { 4 } ) ⟶ ℙ ) |
| 74 |
52 70 72 73
|
syl3anc |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ ; 1 2 ) ∧ 𝑔 : ( 1 ... 3 ) ⟶ ℙ ) → ( 𝑔 ∪ { 〈 4 , 3 〉 } ) : ( ( 1 ... 3 ) ∪ { 4 } ) ⟶ ℙ ) |
| 75 |
|
fzval3 |
⊢ ( 4 ∈ ℤ → ( 1 ... 4 ) = ( 1 ..^ ( 4 + 1 ) ) ) |
| 76 |
53 75
|
ax-mp |
⊢ ( 1 ... 4 ) = ( 1 ..^ ( 4 + 1 ) ) |
| 77 |
|
1z |
⊢ 1 ∈ ℤ |
| 78 |
|
1re |
⊢ 1 ∈ ℝ |
| 79 |
|
1lt4 |
⊢ 1 < 4 |
| 80 |
78 23 79
|
ltleii |
⊢ 1 ≤ 4 |
| 81 |
|
eluz2 |
⊢ ( 4 ∈ ( ℤ≥ ‘ 1 ) ↔ ( 1 ∈ ℤ ∧ 4 ∈ ℤ ∧ 1 ≤ 4 ) ) |
| 82 |
77 53 80 81
|
mpbir3an |
⊢ 4 ∈ ( ℤ≥ ‘ 1 ) |
| 83 |
|
fzosplitsn |
⊢ ( 4 ∈ ( ℤ≥ ‘ 1 ) → ( 1 ..^ ( 4 + 1 ) ) = ( ( 1 ..^ 4 ) ∪ { 4 } ) ) |
| 84 |
82 83
|
ax-mp |
⊢ ( 1 ..^ ( 4 + 1 ) ) = ( ( 1 ..^ 4 ) ∪ { 4 } ) |
| 85 |
65
|
uneq1i |
⊢ ( ( 1 ..^ 4 ) ∪ { 4 } ) = ( ( 1 ... 3 ) ∪ { 4 } ) |
| 86 |
76 84 85
|
3eqtri |
⊢ ( 1 ... 4 ) = ( ( 1 ... 3 ) ∪ { 4 } ) |
| 87 |
86
|
feq2i |
⊢ ( ( 𝑔 ∪ { 〈 4 , 3 〉 } ) : ( 1 ... 4 ) ⟶ ℙ ↔ ( 𝑔 ∪ { 〈 4 , 3 〉 } ) : ( ( 1 ... 3 ) ∪ { 4 } ) ⟶ ℙ ) |
| 88 |
74 87
|
sylibr |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ ; 1 2 ) ∧ 𝑔 : ( 1 ... 3 ) ⟶ ℙ ) → ( 𝑔 ∪ { 〈 4 , 3 〉 } ) : ( 1 ... 4 ) ⟶ ℙ ) |
| 89 |
|
prmex |
⊢ ℙ ∈ V |
| 90 |
|
ovex |
⊢ ( 1 ... 4 ) ∈ V |
| 91 |
89 90
|
pm3.2i |
⊢ ( ℙ ∈ V ∧ ( 1 ... 4 ) ∈ V ) |
| 92 |
|
elmapg |
⊢ ( ( ℙ ∈ V ∧ ( 1 ... 4 ) ∈ V ) → ( ( 𝑔 ∪ { 〈 4 , 3 〉 } ) ∈ ( ℙ ↑m ( 1 ... 4 ) ) ↔ ( 𝑔 ∪ { 〈 4 , 3 〉 } ) : ( 1 ... 4 ) ⟶ ℙ ) ) |
| 93 |
91 92
|
mp1i |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ ; 1 2 ) ∧ 𝑔 : ( 1 ... 3 ) ⟶ ℙ ) → ( ( 𝑔 ∪ { 〈 4 , 3 〉 } ) ∈ ( ℙ ↑m ( 1 ... 4 ) ) ↔ ( 𝑔 ∪ { 〈 4 , 3 〉 } ) : ( 1 ... 4 ) ⟶ ℙ ) ) |
| 94 |
88 93
|
mpbird |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ ; 1 2 ) ∧ 𝑔 : ( 1 ... 3 ) ⟶ ℙ ) → ( 𝑔 ∪ { 〈 4 , 3 〉 } ) ∈ ( ℙ ↑m ( 1 ... 4 ) ) ) |
| 95 |
94
|
adantr |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ ; 1 2 ) ∧ 𝑔 : ( 1 ... 3 ) ⟶ ℙ ) ∧ ( 𝑁 − 3 ) = Σ 𝑘 ∈ ( 1 ... 3 ) ( 𝑔 ‘ 𝑘 ) ) → ( 𝑔 ∪ { 〈 4 , 3 〉 } ) ∈ ( ℙ ↑m ( 1 ... 4 ) ) ) |
| 96 |
|
fveq1 |
⊢ ( 𝑓 = ( 𝑔 ∪ { 〈 4 , 3 〉 } ) → ( 𝑓 ‘ 𝑘 ) = ( ( 𝑔 ∪ { 〈 4 , 3 〉 } ) ‘ 𝑘 ) ) |
| 97 |
96
|
sumeq2sdv |
⊢ ( 𝑓 = ( 𝑔 ∪ { 〈 4 , 3 〉 } ) → Σ 𝑘 ∈ ( 1 ... 4 ) ( 𝑓 ‘ 𝑘 ) = Σ 𝑘 ∈ ( 1 ... 4 ) ( ( 𝑔 ∪ { 〈 4 , 3 〉 } ) ‘ 𝑘 ) ) |
| 98 |
97
|
eqeq2d |
⊢ ( 𝑓 = ( 𝑔 ∪ { 〈 4 , 3 〉 } ) → ( 𝑁 = Σ 𝑘 ∈ ( 1 ... 4 ) ( 𝑓 ‘ 𝑘 ) ↔ 𝑁 = Σ 𝑘 ∈ ( 1 ... 4 ) ( ( 𝑔 ∪ { 〈 4 , 3 〉 } ) ‘ 𝑘 ) ) ) |
| 99 |
98
|
adantl |
⊢ ( ( ( ( 𝑁 ∈ ( ℤ≥ ‘ ; 1 2 ) ∧ 𝑔 : ( 1 ... 3 ) ⟶ ℙ ) ∧ ( 𝑁 − 3 ) = Σ 𝑘 ∈ ( 1 ... 3 ) ( 𝑔 ‘ 𝑘 ) ) ∧ 𝑓 = ( 𝑔 ∪ { 〈 4 , 3 〉 } ) ) → ( 𝑁 = Σ 𝑘 ∈ ( 1 ... 4 ) ( 𝑓 ‘ 𝑘 ) ↔ 𝑁 = Σ 𝑘 ∈ ( 1 ... 4 ) ( ( 𝑔 ∪ { 〈 4 , 3 〉 } ) ‘ 𝑘 ) ) ) |
| 100 |
82
|
a1i |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ ; 1 2 ) ∧ 𝑔 : ( 1 ... 3 ) ⟶ ℙ ) → 4 ∈ ( ℤ≥ ‘ 1 ) ) |
| 101 |
86
|
eleq2i |
⊢ ( 𝑘 ∈ ( 1 ... 4 ) ↔ 𝑘 ∈ ( ( 1 ... 3 ) ∪ { 4 } ) ) |
| 102 |
|
elun |
⊢ ( 𝑘 ∈ ( ( 1 ... 3 ) ∪ { 4 } ) ↔ ( 𝑘 ∈ ( 1 ... 3 ) ∨ 𝑘 ∈ { 4 } ) ) |
| 103 |
|
velsn |
⊢ ( 𝑘 ∈ { 4 } ↔ 𝑘 = 4 ) |
| 104 |
103
|
orbi2i |
⊢ ( ( 𝑘 ∈ ( 1 ... 3 ) ∨ 𝑘 ∈ { 4 } ) ↔ ( 𝑘 ∈ ( 1 ... 3 ) ∨ 𝑘 = 4 ) ) |
| 105 |
101 102 104
|
3bitri |
⊢ ( 𝑘 ∈ ( 1 ... 4 ) ↔ ( 𝑘 ∈ ( 1 ... 3 ) ∨ 𝑘 = 4 ) ) |
| 106 |
|
elfz2 |
⊢ ( 𝑘 ∈ ( 1 ... 3 ) ↔ ( ( 1 ∈ ℤ ∧ 3 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ∧ ( 1 ≤ 𝑘 ∧ 𝑘 ≤ 3 ) ) ) |
| 107 |
20 23
|
pm3.2i |
⊢ ( 3 ∈ ℝ ∧ 4 ∈ ℝ ) |
| 108 |
|
3lt4 |
⊢ 3 < 4 |
| 109 |
|
ltnle |
⊢ ( ( 3 ∈ ℝ ∧ 4 ∈ ℝ ) → ( 3 < 4 ↔ ¬ 4 ≤ 3 ) ) |
| 110 |
108 109
|
mpbii |
⊢ ( ( 3 ∈ ℝ ∧ 4 ∈ ℝ ) → ¬ 4 ≤ 3 ) |
| 111 |
107 110
|
ax-mp |
⊢ ¬ 4 ≤ 3 |
| 112 |
|
breq1 |
⊢ ( 𝑘 = 4 → ( 𝑘 ≤ 3 ↔ 4 ≤ 3 ) ) |
| 113 |
112
|
eqcoms |
⊢ ( 4 = 𝑘 → ( 𝑘 ≤ 3 ↔ 4 ≤ 3 ) ) |
| 114 |
111 113
|
mtbiri |
⊢ ( 4 = 𝑘 → ¬ 𝑘 ≤ 3 ) |
| 115 |
114
|
a1i |
⊢ ( 𝑘 ∈ ℤ → ( 4 = 𝑘 → ¬ 𝑘 ≤ 3 ) ) |
| 116 |
115
|
necon2ad |
⊢ ( 𝑘 ∈ ℤ → ( 𝑘 ≤ 3 → 4 ≠ 𝑘 ) ) |
| 117 |
116
|
adantld |
⊢ ( 𝑘 ∈ ℤ → ( ( 1 ≤ 𝑘 ∧ 𝑘 ≤ 3 ) → 4 ≠ 𝑘 ) ) |
| 118 |
117
|
3ad2ant3 |
⊢ ( ( 1 ∈ ℤ ∧ 3 ∈ ℤ ∧ 𝑘 ∈ ℤ ) → ( ( 1 ≤ 𝑘 ∧ 𝑘 ≤ 3 ) → 4 ≠ 𝑘 ) ) |
| 119 |
118
|
imp |
⊢ ( ( ( 1 ∈ ℤ ∧ 3 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ∧ ( 1 ≤ 𝑘 ∧ 𝑘 ≤ 3 ) ) → 4 ≠ 𝑘 ) |
| 120 |
106 119
|
sylbi |
⊢ ( 𝑘 ∈ ( 1 ... 3 ) → 4 ≠ 𝑘 ) |
| 121 |
120
|
adantr |
⊢ ( ( 𝑘 ∈ ( 1 ... 3 ) ∧ 𝑔 : ( 1 ... 3 ) ⟶ ℙ ) → 4 ≠ 𝑘 ) |
| 122 |
|
fvunsn |
⊢ ( 4 ≠ 𝑘 → ( ( 𝑔 ∪ { 〈 4 , 3 〉 } ) ‘ 𝑘 ) = ( 𝑔 ‘ 𝑘 ) ) |
| 123 |
121 122
|
syl |
⊢ ( ( 𝑘 ∈ ( 1 ... 3 ) ∧ 𝑔 : ( 1 ... 3 ) ⟶ ℙ ) → ( ( 𝑔 ∪ { 〈 4 , 3 〉 } ) ‘ 𝑘 ) = ( 𝑔 ‘ 𝑘 ) ) |
| 124 |
|
ffvelcdm |
⊢ ( ( 𝑔 : ( 1 ... 3 ) ⟶ ℙ ∧ 𝑘 ∈ ( 1 ... 3 ) ) → ( 𝑔 ‘ 𝑘 ) ∈ ℙ ) |
| 125 |
124
|
ancoms |
⊢ ( ( 𝑘 ∈ ( 1 ... 3 ) ∧ 𝑔 : ( 1 ... 3 ) ⟶ ℙ ) → ( 𝑔 ‘ 𝑘 ) ∈ ℙ ) |
| 126 |
|
prmz |
⊢ ( ( 𝑔 ‘ 𝑘 ) ∈ ℙ → ( 𝑔 ‘ 𝑘 ) ∈ ℤ ) |
| 127 |
125 126
|
syl |
⊢ ( ( 𝑘 ∈ ( 1 ... 3 ) ∧ 𝑔 : ( 1 ... 3 ) ⟶ ℙ ) → ( 𝑔 ‘ 𝑘 ) ∈ ℤ ) |
| 128 |
127
|
zcnd |
⊢ ( ( 𝑘 ∈ ( 1 ... 3 ) ∧ 𝑔 : ( 1 ... 3 ) ⟶ ℙ ) → ( 𝑔 ‘ 𝑘 ) ∈ ℂ ) |
| 129 |
123 128
|
eqeltrd |
⊢ ( ( 𝑘 ∈ ( 1 ... 3 ) ∧ 𝑔 : ( 1 ... 3 ) ⟶ ℙ ) → ( ( 𝑔 ∪ { 〈 4 , 3 〉 } ) ‘ 𝑘 ) ∈ ℂ ) |
| 130 |
129
|
ex |
⊢ ( 𝑘 ∈ ( 1 ... 3 ) → ( 𝑔 : ( 1 ... 3 ) ⟶ ℙ → ( ( 𝑔 ∪ { 〈 4 , 3 〉 } ) ‘ 𝑘 ) ∈ ℂ ) ) |
| 131 |
130
|
adantld |
⊢ ( 𝑘 ∈ ( 1 ... 3 ) → ( ( 𝑁 ∈ ( ℤ≥ ‘ ; 1 2 ) ∧ 𝑔 : ( 1 ... 3 ) ⟶ ℙ ) → ( ( 𝑔 ∪ { 〈 4 , 3 〉 } ) ‘ 𝑘 ) ∈ ℂ ) ) |
| 132 |
|
fveq2 |
⊢ ( 𝑘 = 4 → ( ( 𝑔 ∪ { 〈 4 , 3 〉 } ) ‘ 𝑘 ) = ( ( 𝑔 ∪ { 〈 4 , 3 〉 } ) ‘ 4 ) ) |
| 133 |
53
|
a1i |
⊢ ( 𝑔 : ( 1 ... 3 ) ⟶ ℙ → 4 ∈ ℤ ) |
| 134 |
5
|
a1i |
⊢ ( 𝑔 : ( 1 ... 3 ) ⟶ ℙ → 3 ∈ ℤ ) |
| 135 |
|
fdm |
⊢ ( 𝑔 : ( 1 ... 3 ) ⟶ ℙ → dom 𝑔 = ( 1 ... 3 ) ) |
| 136 |
|
eleq2 |
⊢ ( dom 𝑔 = ( 1 ... 3 ) → ( 4 ∈ dom 𝑔 ↔ 4 ∈ ( 1 ... 3 ) ) ) |
| 137 |
68 136
|
mtbiri |
⊢ ( dom 𝑔 = ( 1 ... 3 ) → ¬ 4 ∈ dom 𝑔 ) |
| 138 |
135 137
|
syl |
⊢ ( 𝑔 : ( 1 ... 3 ) ⟶ ℙ → ¬ 4 ∈ dom 𝑔 ) |
| 139 |
|
fsnunfv |
⊢ ( ( 4 ∈ ℤ ∧ 3 ∈ ℤ ∧ ¬ 4 ∈ dom 𝑔 ) → ( ( 𝑔 ∪ { 〈 4 , 3 〉 } ) ‘ 4 ) = 3 ) |
| 140 |
133 134 138 139
|
syl3anc |
⊢ ( 𝑔 : ( 1 ... 3 ) ⟶ ℙ → ( ( 𝑔 ∪ { 〈 4 , 3 〉 } ) ‘ 4 ) = 3 ) |
| 141 |
140
|
adantl |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ ; 1 2 ) ∧ 𝑔 : ( 1 ... 3 ) ⟶ ℙ ) → ( ( 𝑔 ∪ { 〈 4 , 3 〉 } ) ‘ 4 ) = 3 ) |
| 142 |
132 141
|
sylan9eq |
⊢ ( ( 𝑘 = 4 ∧ ( 𝑁 ∈ ( ℤ≥ ‘ ; 1 2 ) ∧ 𝑔 : ( 1 ... 3 ) ⟶ ℙ ) ) → ( ( 𝑔 ∪ { 〈 4 , 3 〉 } ) ‘ 𝑘 ) = 3 ) |
| 143 |
142 59
|
eqeltrdi |
⊢ ( ( 𝑘 = 4 ∧ ( 𝑁 ∈ ( ℤ≥ ‘ ; 1 2 ) ∧ 𝑔 : ( 1 ... 3 ) ⟶ ℙ ) ) → ( ( 𝑔 ∪ { 〈 4 , 3 〉 } ) ‘ 𝑘 ) ∈ ℂ ) |
| 144 |
143
|
ex |
⊢ ( 𝑘 = 4 → ( ( 𝑁 ∈ ( ℤ≥ ‘ ; 1 2 ) ∧ 𝑔 : ( 1 ... 3 ) ⟶ ℙ ) → ( ( 𝑔 ∪ { 〈 4 , 3 〉 } ) ‘ 𝑘 ) ∈ ℂ ) ) |
| 145 |
131 144
|
jaoi |
⊢ ( ( 𝑘 ∈ ( 1 ... 3 ) ∨ 𝑘 = 4 ) → ( ( 𝑁 ∈ ( ℤ≥ ‘ ; 1 2 ) ∧ 𝑔 : ( 1 ... 3 ) ⟶ ℙ ) → ( ( 𝑔 ∪ { 〈 4 , 3 〉 } ) ‘ 𝑘 ) ∈ ℂ ) ) |
| 146 |
145
|
com12 |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ ; 1 2 ) ∧ 𝑔 : ( 1 ... 3 ) ⟶ ℙ ) → ( ( 𝑘 ∈ ( 1 ... 3 ) ∨ 𝑘 = 4 ) → ( ( 𝑔 ∪ { 〈 4 , 3 〉 } ) ‘ 𝑘 ) ∈ ℂ ) ) |
| 147 |
105 146
|
biimtrid |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ ; 1 2 ) ∧ 𝑔 : ( 1 ... 3 ) ⟶ ℙ ) → ( 𝑘 ∈ ( 1 ... 4 ) → ( ( 𝑔 ∪ { 〈 4 , 3 〉 } ) ‘ 𝑘 ) ∈ ℂ ) ) |
| 148 |
147
|
imp |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ ; 1 2 ) ∧ 𝑔 : ( 1 ... 3 ) ⟶ ℙ ) ∧ 𝑘 ∈ ( 1 ... 4 ) ) → ( ( 𝑔 ∪ { 〈 4 , 3 〉 } ) ‘ 𝑘 ) ∈ ℂ ) |
| 149 |
100 148 132
|
fsumm1 |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ ; 1 2 ) ∧ 𝑔 : ( 1 ... 3 ) ⟶ ℙ ) → Σ 𝑘 ∈ ( 1 ... 4 ) ( ( 𝑔 ∪ { 〈 4 , 3 〉 } ) ‘ 𝑘 ) = ( Σ 𝑘 ∈ ( 1 ... ( 4 − 1 ) ) ( ( 𝑔 ∪ { 〈 4 , 3 〉 } ) ‘ 𝑘 ) + ( ( 𝑔 ∪ { 〈 4 , 3 〉 } ) ‘ 4 ) ) ) |
| 150 |
149
|
adantr |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ ; 1 2 ) ∧ 𝑔 : ( 1 ... 3 ) ⟶ ℙ ) ∧ ( 𝑁 − 3 ) = Σ 𝑘 ∈ ( 1 ... 3 ) ( 𝑔 ‘ 𝑘 ) ) → Σ 𝑘 ∈ ( 1 ... 4 ) ( ( 𝑔 ∪ { 〈 4 , 3 〉 } ) ‘ 𝑘 ) = ( Σ 𝑘 ∈ ( 1 ... ( 4 − 1 ) ) ( ( 𝑔 ∪ { 〈 4 , 3 〉 } ) ‘ 𝑘 ) + ( ( 𝑔 ∪ { 〈 4 , 3 〉 } ) ‘ 4 ) ) ) |
| 151 |
63
|
eqcomi |
⊢ 3 = ( 4 − 1 ) |
| 152 |
151
|
oveq2i |
⊢ ( 1 ... 3 ) = ( 1 ... ( 4 − 1 ) ) |
| 153 |
152
|
a1i |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ ; 1 2 ) ∧ 𝑔 : ( 1 ... 3 ) ⟶ ℙ ) → ( 1 ... 3 ) = ( 1 ... ( 4 − 1 ) ) ) |
| 154 |
120
|
adantl |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ ; 1 2 ) ∧ 𝑔 : ( 1 ... 3 ) ⟶ ℙ ) ∧ 𝑘 ∈ ( 1 ... 3 ) ) → 4 ≠ 𝑘 ) |
| 155 |
154 122
|
syl |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ ; 1 2 ) ∧ 𝑔 : ( 1 ... 3 ) ⟶ ℙ ) ∧ 𝑘 ∈ ( 1 ... 3 ) ) → ( ( 𝑔 ∪ { 〈 4 , 3 〉 } ) ‘ 𝑘 ) = ( 𝑔 ‘ 𝑘 ) ) |
| 156 |
155
|
eqcomd |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ ; 1 2 ) ∧ 𝑔 : ( 1 ... 3 ) ⟶ ℙ ) ∧ 𝑘 ∈ ( 1 ... 3 ) ) → ( 𝑔 ‘ 𝑘 ) = ( ( 𝑔 ∪ { 〈 4 , 3 〉 } ) ‘ 𝑘 ) ) |
| 157 |
153 156
|
sumeq12dv |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ ; 1 2 ) ∧ 𝑔 : ( 1 ... 3 ) ⟶ ℙ ) → Σ 𝑘 ∈ ( 1 ... 3 ) ( 𝑔 ‘ 𝑘 ) = Σ 𝑘 ∈ ( 1 ... ( 4 − 1 ) ) ( ( 𝑔 ∪ { 〈 4 , 3 〉 } ) ‘ 𝑘 ) ) |
| 158 |
157
|
eqeq2d |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ ; 1 2 ) ∧ 𝑔 : ( 1 ... 3 ) ⟶ ℙ ) → ( ( 𝑁 − 3 ) = Σ 𝑘 ∈ ( 1 ... 3 ) ( 𝑔 ‘ 𝑘 ) ↔ ( 𝑁 − 3 ) = Σ 𝑘 ∈ ( 1 ... ( 4 − 1 ) ) ( ( 𝑔 ∪ { 〈 4 , 3 〉 } ) ‘ 𝑘 ) ) ) |
| 159 |
158
|
biimpa |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ ; 1 2 ) ∧ 𝑔 : ( 1 ... 3 ) ⟶ ℙ ) ∧ ( 𝑁 − 3 ) = Σ 𝑘 ∈ ( 1 ... 3 ) ( 𝑔 ‘ 𝑘 ) ) → ( 𝑁 − 3 ) = Σ 𝑘 ∈ ( 1 ... ( 4 − 1 ) ) ( ( 𝑔 ∪ { 〈 4 , 3 〉 } ) ‘ 𝑘 ) ) |
| 160 |
159
|
eqcomd |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ ; 1 2 ) ∧ 𝑔 : ( 1 ... 3 ) ⟶ ℙ ) ∧ ( 𝑁 − 3 ) = Σ 𝑘 ∈ ( 1 ... 3 ) ( 𝑔 ‘ 𝑘 ) ) → Σ 𝑘 ∈ ( 1 ... ( 4 − 1 ) ) ( ( 𝑔 ∪ { 〈 4 , 3 〉 } ) ‘ 𝑘 ) = ( 𝑁 − 3 ) ) |
| 161 |
160
|
oveq1d |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ ; 1 2 ) ∧ 𝑔 : ( 1 ... 3 ) ⟶ ℙ ) ∧ ( 𝑁 − 3 ) = Σ 𝑘 ∈ ( 1 ... 3 ) ( 𝑔 ‘ 𝑘 ) ) → ( Σ 𝑘 ∈ ( 1 ... ( 4 − 1 ) ) ( ( 𝑔 ∪ { 〈 4 , 3 〉 } ) ‘ 𝑘 ) + ( ( 𝑔 ∪ { 〈 4 , 3 〉 } ) ‘ 4 ) ) = ( ( 𝑁 − 3 ) + ( ( 𝑔 ∪ { 〈 4 , 3 〉 } ) ‘ 4 ) ) ) |
| 162 |
53
|
a1i |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ ; 1 2 ) ∧ 𝑔 : ( 1 ... 3 ) ⟶ ℙ ) → 4 ∈ ℤ ) |
| 163 |
5
|
a1i |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ ; 1 2 ) ∧ 𝑔 : ( 1 ... 3 ) ⟶ ℙ ) → 3 ∈ ℤ ) |
| 164 |
138
|
adantl |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ ; 1 2 ) ∧ 𝑔 : ( 1 ... 3 ) ⟶ ℙ ) → ¬ 4 ∈ dom 𝑔 ) |
| 165 |
162 163 164 139
|
syl3anc |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ ; 1 2 ) ∧ 𝑔 : ( 1 ... 3 ) ⟶ ℙ ) → ( ( 𝑔 ∪ { 〈 4 , 3 〉 } ) ‘ 4 ) = 3 ) |
| 166 |
165
|
oveq2d |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ ; 1 2 ) ∧ 𝑔 : ( 1 ... 3 ) ⟶ ℙ ) → ( ( 𝑁 − 3 ) + ( ( 𝑔 ∪ { 〈 4 , 3 〉 } ) ‘ 4 ) ) = ( ( 𝑁 − 3 ) + 3 ) ) |
| 167 |
|
eluzelcn |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ ; 1 2 ) → 𝑁 ∈ ℂ ) |
| 168 |
59
|
a1i |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ ; 1 2 ) → 3 ∈ ℂ ) |
| 169 |
167 168
|
npcand |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ ; 1 2 ) → ( ( 𝑁 − 3 ) + 3 ) = 𝑁 ) |
| 170 |
169
|
adantr |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ ; 1 2 ) ∧ 𝑔 : ( 1 ... 3 ) ⟶ ℙ ) → ( ( 𝑁 − 3 ) + 3 ) = 𝑁 ) |
| 171 |
166 170
|
eqtrd |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ ; 1 2 ) ∧ 𝑔 : ( 1 ... 3 ) ⟶ ℙ ) → ( ( 𝑁 − 3 ) + ( ( 𝑔 ∪ { 〈 4 , 3 〉 } ) ‘ 4 ) ) = 𝑁 ) |
| 172 |
171
|
adantr |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ ; 1 2 ) ∧ 𝑔 : ( 1 ... 3 ) ⟶ ℙ ) ∧ ( 𝑁 − 3 ) = Σ 𝑘 ∈ ( 1 ... 3 ) ( 𝑔 ‘ 𝑘 ) ) → ( ( 𝑁 − 3 ) + ( ( 𝑔 ∪ { 〈 4 , 3 〉 } ) ‘ 4 ) ) = 𝑁 ) |
| 173 |
150 161 172
|
3eqtrrd |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ ; 1 2 ) ∧ 𝑔 : ( 1 ... 3 ) ⟶ ℙ ) ∧ ( 𝑁 − 3 ) = Σ 𝑘 ∈ ( 1 ... 3 ) ( 𝑔 ‘ 𝑘 ) ) → 𝑁 = Σ 𝑘 ∈ ( 1 ... 4 ) ( ( 𝑔 ∪ { 〈 4 , 3 〉 } ) ‘ 𝑘 ) ) |
| 174 |
95 99 173
|
rspcedvd |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ ; 1 2 ) ∧ 𝑔 : ( 1 ... 3 ) ⟶ ℙ ) ∧ ( 𝑁 − 3 ) = Σ 𝑘 ∈ ( 1 ... 3 ) ( 𝑔 ‘ 𝑘 ) ) → ∃ 𝑓 ∈ ( ℙ ↑m ( 1 ... 4 ) ) 𝑁 = Σ 𝑘 ∈ ( 1 ... 4 ) ( 𝑓 ‘ 𝑘 ) ) |
| 175 |
174
|
ex |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ ; 1 2 ) ∧ 𝑔 : ( 1 ... 3 ) ⟶ ℙ ) → ( ( 𝑁 − 3 ) = Σ 𝑘 ∈ ( 1 ... 3 ) ( 𝑔 ‘ 𝑘 ) → ∃ 𝑓 ∈ ( ℙ ↑m ( 1 ... 4 ) ) 𝑁 = Σ 𝑘 ∈ ( 1 ... 4 ) ( 𝑓 ‘ 𝑘 ) ) ) |
| 176 |
175
|
expcom |
⊢ ( 𝑔 : ( 1 ... 3 ) ⟶ ℙ → ( 𝑁 ∈ ( ℤ≥ ‘ ; 1 2 ) → ( ( 𝑁 − 3 ) = Σ 𝑘 ∈ ( 1 ... 3 ) ( 𝑔 ‘ 𝑘 ) → ∃ 𝑓 ∈ ( ℙ ↑m ( 1 ... 4 ) ) 𝑁 = Σ 𝑘 ∈ ( 1 ... 4 ) ( 𝑓 ‘ 𝑘 ) ) ) ) |
| 177 |
|
elmapi |
⊢ ( 𝑔 ∈ ( ℙ ↑m ( 1 ... 3 ) ) → 𝑔 : ( 1 ... 3 ) ⟶ ℙ ) |
| 178 |
176 177
|
syl11 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ ; 1 2 ) → ( 𝑔 ∈ ( ℙ ↑m ( 1 ... 3 ) ) → ( ( 𝑁 − 3 ) = Σ 𝑘 ∈ ( 1 ... 3 ) ( 𝑔 ‘ 𝑘 ) → ∃ 𝑓 ∈ ( ℙ ↑m ( 1 ... 4 ) ) 𝑁 = Σ 𝑘 ∈ ( 1 ... 4 ) ( 𝑓 ‘ 𝑘 ) ) ) ) |
| 179 |
178
|
rexlimdv |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ ; 1 2 ) → ( ∃ 𝑔 ∈ ( ℙ ↑m ( 1 ... 3 ) ) ( 𝑁 − 3 ) = Σ 𝑘 ∈ ( 1 ... 3 ) ( 𝑔 ‘ 𝑘 ) → ∃ 𝑓 ∈ ( ℙ ↑m ( 1 ... 4 ) ) 𝑁 = Σ 𝑘 ∈ ( 1 ... 4 ) ( 𝑓 ‘ 𝑘 ) ) ) |
| 180 |
179
|
adantr |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ ; 1 2 ) ∧ 𝑁 ∈ Even ) → ( ∃ 𝑔 ∈ ( ℙ ↑m ( 1 ... 3 ) ) ( 𝑁 − 3 ) = Σ 𝑘 ∈ ( 1 ... 3 ) ( 𝑔 ‘ 𝑘 ) → ∃ 𝑓 ∈ ( ℙ ↑m ( 1 ... 4 ) ) 𝑁 = Σ 𝑘 ∈ ( 1 ... 4 ) ( 𝑓 ‘ 𝑘 ) ) ) |
| 181 |
180
|
ad3antlr |
⊢ ( ( ( ( ∀ 𝑚 ∈ Odd ( 7 < 𝑚 → 𝑚 ∈ GoldbachOdd ) ∧ ( 𝑁 ∈ ( ℤ≥ ‘ ; 1 2 ) ∧ 𝑁 ∈ Even ) ) ∧ 𝑜 ∈ GoldbachOdd ) ∧ 𝑁 = ( 𝑜 + 3 ) ) → ( ∃ 𝑔 ∈ ( ℙ ↑m ( 1 ... 3 ) ) ( 𝑁 − 3 ) = Σ 𝑘 ∈ ( 1 ... 3 ) ( 𝑔 ‘ 𝑘 ) → ∃ 𝑓 ∈ ( ℙ ↑m ( 1 ... 4 ) ) 𝑁 = Σ 𝑘 ∈ ( 1 ... 4 ) ( 𝑓 ‘ 𝑘 ) ) ) |
| 182 |
51 181
|
mpd |
⊢ ( ( ( ( ∀ 𝑚 ∈ Odd ( 7 < 𝑚 → 𝑚 ∈ GoldbachOdd ) ∧ ( 𝑁 ∈ ( ℤ≥ ‘ ; 1 2 ) ∧ 𝑁 ∈ Even ) ) ∧ 𝑜 ∈ GoldbachOdd ) ∧ 𝑁 = ( 𝑜 + 3 ) ) → ∃ 𝑓 ∈ ( ℙ ↑m ( 1 ... 4 ) ) 𝑁 = Σ 𝑘 ∈ ( 1 ... 4 ) ( 𝑓 ‘ 𝑘 ) ) |
| 183 |
|
evengpoap3 |
⊢ ( ∀ 𝑚 ∈ Odd ( 7 < 𝑚 → 𝑚 ∈ GoldbachOdd ) → ( ( 𝑁 ∈ ( ℤ≥ ‘ ; 1 2 ) ∧ 𝑁 ∈ Even ) → ∃ 𝑜 ∈ GoldbachOdd 𝑁 = ( 𝑜 + 3 ) ) ) |
| 184 |
183
|
imp |
⊢ ( ( ∀ 𝑚 ∈ Odd ( 7 < 𝑚 → 𝑚 ∈ GoldbachOdd ) ∧ ( 𝑁 ∈ ( ℤ≥ ‘ ; 1 2 ) ∧ 𝑁 ∈ Even ) ) → ∃ 𝑜 ∈ GoldbachOdd 𝑁 = ( 𝑜 + 3 ) ) |
| 185 |
182 184
|
r19.29a |
⊢ ( ( ∀ 𝑚 ∈ Odd ( 7 < 𝑚 → 𝑚 ∈ GoldbachOdd ) ∧ ( 𝑁 ∈ ( ℤ≥ ‘ ; 1 2 ) ∧ 𝑁 ∈ Even ) ) → ∃ 𝑓 ∈ ( ℙ ↑m ( 1 ... 4 ) ) 𝑁 = Σ 𝑘 ∈ ( 1 ... 4 ) ( 𝑓 ‘ 𝑘 ) ) |
| 186 |
185
|
ex |
⊢ ( ∀ 𝑚 ∈ Odd ( 7 < 𝑚 → 𝑚 ∈ GoldbachOdd ) → ( ( 𝑁 ∈ ( ℤ≥ ‘ ; 1 2 ) ∧ 𝑁 ∈ Even ) → ∃ 𝑓 ∈ ( ℙ ↑m ( 1 ... 4 ) ) 𝑁 = Σ 𝑘 ∈ ( 1 ... 4 ) ( 𝑓 ‘ 𝑘 ) ) ) |