| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simplll |
|- ( ( ( ( A. m e. Odd ( 7 < m -> m e. GoldbachOdd ) /\ ( N e. ( ZZ>= ` ; 1 2 ) /\ N e. Even ) ) /\ o e. GoldbachOdd ) /\ N = ( o + 3 ) ) -> A. m e. Odd ( 7 < m -> m e. GoldbachOdd ) ) |
| 2 |
|
8nn |
|- 8 e. NN |
| 3 |
2
|
nnzi |
|- 8 e. ZZ |
| 4 |
3
|
a1i |
|- ( N e. ( ZZ>= ` ; 1 2 ) -> 8 e. ZZ ) |
| 5 |
|
3z |
|- 3 e. ZZ |
| 6 |
5
|
a1i |
|- ( N e. ( ZZ>= ` ; 1 2 ) -> 3 e. ZZ ) |
| 7 |
4 6
|
zaddcld |
|- ( N e. ( ZZ>= ` ; 1 2 ) -> ( 8 + 3 ) e. ZZ ) |
| 8 |
|
eluzelz |
|- ( N e. ( ZZ>= ` ; 1 2 ) -> N e. ZZ ) |
| 9 |
|
eluz2 |
|- ( N e. ( ZZ>= ` ; 1 2 ) <-> ( ; 1 2 e. ZZ /\ N e. ZZ /\ ; 1 2 <_ N ) ) |
| 10 |
|
8p4e12 |
|- ( 8 + 4 ) = ; 1 2 |
| 11 |
10
|
breq1i |
|- ( ( 8 + 4 ) <_ N <-> ; 1 2 <_ N ) |
| 12 |
|
1nn0 |
|- 1 e. NN0 |
| 13 |
|
2nn |
|- 2 e. NN |
| 14 |
|
1lt2 |
|- 1 < 2 |
| 15 |
12 12 13 14
|
declt |
|- ; 1 1 < ; 1 2 |
| 16 |
|
8p3e11 |
|- ( 8 + 3 ) = ; 1 1 |
| 17 |
15 16 10
|
3brtr4i |
|- ( 8 + 3 ) < ( 8 + 4 ) |
| 18 |
|
8re |
|- 8 e. RR |
| 19 |
18
|
a1i |
|- ( N e. ZZ -> 8 e. RR ) |
| 20 |
|
3re |
|- 3 e. RR |
| 21 |
20
|
a1i |
|- ( N e. ZZ -> 3 e. RR ) |
| 22 |
19 21
|
readdcld |
|- ( N e. ZZ -> ( 8 + 3 ) e. RR ) |
| 23 |
|
4re |
|- 4 e. RR |
| 24 |
23
|
a1i |
|- ( N e. ZZ -> 4 e. RR ) |
| 25 |
19 24
|
readdcld |
|- ( N e. ZZ -> ( 8 + 4 ) e. RR ) |
| 26 |
|
zre |
|- ( N e. ZZ -> N e. RR ) |
| 27 |
|
ltleletr |
|- ( ( ( 8 + 3 ) e. RR /\ ( 8 + 4 ) e. RR /\ N e. RR ) -> ( ( ( 8 + 3 ) < ( 8 + 4 ) /\ ( 8 + 4 ) <_ N ) -> ( 8 + 3 ) <_ N ) ) |
| 28 |
22 25 26 27
|
syl3anc |
|- ( N e. ZZ -> ( ( ( 8 + 3 ) < ( 8 + 4 ) /\ ( 8 + 4 ) <_ N ) -> ( 8 + 3 ) <_ N ) ) |
| 29 |
17 28
|
mpani |
|- ( N e. ZZ -> ( ( 8 + 4 ) <_ N -> ( 8 + 3 ) <_ N ) ) |
| 30 |
11 29
|
biimtrrid |
|- ( N e. ZZ -> ( ; 1 2 <_ N -> ( 8 + 3 ) <_ N ) ) |
| 31 |
30
|
imp |
|- ( ( N e. ZZ /\ ; 1 2 <_ N ) -> ( 8 + 3 ) <_ N ) |
| 32 |
31
|
3adant1 |
|- ( ( ; 1 2 e. ZZ /\ N e. ZZ /\ ; 1 2 <_ N ) -> ( 8 + 3 ) <_ N ) |
| 33 |
9 32
|
sylbi |
|- ( N e. ( ZZ>= ` ; 1 2 ) -> ( 8 + 3 ) <_ N ) |
| 34 |
|
eluz2 |
|- ( N e. ( ZZ>= ` ( 8 + 3 ) ) <-> ( ( 8 + 3 ) e. ZZ /\ N e. ZZ /\ ( 8 + 3 ) <_ N ) ) |
| 35 |
7 8 33 34
|
syl3anbrc |
|- ( N e. ( ZZ>= ` ; 1 2 ) -> N e. ( ZZ>= ` ( 8 + 3 ) ) ) |
| 36 |
|
eluzsub |
|- ( ( 8 e. ZZ /\ 3 e. ZZ /\ N e. ( ZZ>= ` ( 8 + 3 ) ) ) -> ( N - 3 ) e. ( ZZ>= ` 8 ) ) |
| 37 |
4 6 35 36
|
syl3anc |
|- ( N e. ( ZZ>= ` ; 1 2 ) -> ( N - 3 ) e. ( ZZ>= ` 8 ) ) |
| 38 |
37
|
adantr |
|- ( ( N e. ( ZZ>= ` ; 1 2 ) /\ N e. Even ) -> ( N - 3 ) e. ( ZZ>= ` 8 ) ) |
| 39 |
38
|
ad3antlr |
|- ( ( ( ( A. m e. Odd ( 7 < m -> m e. GoldbachOdd ) /\ ( N e. ( ZZ>= ` ; 1 2 ) /\ N e. Even ) ) /\ o e. GoldbachOdd ) /\ N = ( o + 3 ) ) -> ( N - 3 ) e. ( ZZ>= ` 8 ) ) |
| 40 |
|
3odd |
|- 3 e. Odd |
| 41 |
40
|
a1i |
|- ( N e. ( ZZ>= ` ; 1 2 ) -> 3 e. Odd ) |
| 42 |
41
|
anim1i |
|- ( ( N e. ( ZZ>= ` ; 1 2 ) /\ N e. Even ) -> ( 3 e. Odd /\ N e. Even ) ) |
| 43 |
42
|
adantl |
|- ( ( A. m e. Odd ( 7 < m -> m e. GoldbachOdd ) /\ ( N e. ( ZZ>= ` ; 1 2 ) /\ N e. Even ) ) -> ( 3 e. Odd /\ N e. Even ) ) |
| 44 |
43
|
ancomd |
|- ( ( A. m e. Odd ( 7 < m -> m e. GoldbachOdd ) /\ ( N e. ( ZZ>= ` ; 1 2 ) /\ N e. Even ) ) -> ( N e. Even /\ 3 e. Odd ) ) |
| 45 |
44
|
adantr |
|- ( ( ( A. m e. Odd ( 7 < m -> m e. GoldbachOdd ) /\ ( N e. ( ZZ>= ` ; 1 2 ) /\ N e. Even ) ) /\ o e. GoldbachOdd ) -> ( N e. Even /\ 3 e. Odd ) ) |
| 46 |
45
|
adantr |
|- ( ( ( ( A. m e. Odd ( 7 < m -> m e. GoldbachOdd ) /\ ( N e. ( ZZ>= ` ; 1 2 ) /\ N e. Even ) ) /\ o e. GoldbachOdd ) /\ N = ( o + 3 ) ) -> ( N e. Even /\ 3 e. Odd ) ) |
| 47 |
|
emoo |
|- ( ( N e. Even /\ 3 e. Odd ) -> ( N - 3 ) e. Odd ) |
| 48 |
46 47
|
syl |
|- ( ( ( ( A. m e. Odd ( 7 < m -> m e. GoldbachOdd ) /\ ( N e. ( ZZ>= ` ; 1 2 ) /\ N e. Even ) ) /\ o e. GoldbachOdd ) /\ N = ( o + 3 ) ) -> ( N - 3 ) e. Odd ) |
| 49 |
|
nnsum4primesoddALTV |
|- ( A. m e. Odd ( 7 < m -> m e. GoldbachOdd ) -> ( ( ( N - 3 ) e. ( ZZ>= ` 8 ) /\ ( N - 3 ) e. Odd ) -> E. g e. ( Prime ^m ( 1 ... 3 ) ) ( N - 3 ) = sum_ k e. ( 1 ... 3 ) ( g ` k ) ) ) |
| 50 |
49
|
imp |
|- ( ( A. m e. Odd ( 7 < m -> m e. GoldbachOdd ) /\ ( ( N - 3 ) e. ( ZZ>= ` 8 ) /\ ( N - 3 ) e. Odd ) ) -> E. g e. ( Prime ^m ( 1 ... 3 ) ) ( N - 3 ) = sum_ k e. ( 1 ... 3 ) ( g ` k ) ) |
| 51 |
1 39 48 50
|
syl12anc |
|- ( ( ( ( A. m e. Odd ( 7 < m -> m e. GoldbachOdd ) /\ ( N e. ( ZZ>= ` ; 1 2 ) /\ N e. Even ) ) /\ o e. GoldbachOdd ) /\ N = ( o + 3 ) ) -> E. g e. ( Prime ^m ( 1 ... 3 ) ) ( N - 3 ) = sum_ k e. ( 1 ... 3 ) ( g ` k ) ) |
| 52 |
|
simpr |
|- ( ( N e. ( ZZ>= ` ; 1 2 ) /\ g : ( 1 ... 3 ) --> Prime ) -> g : ( 1 ... 3 ) --> Prime ) |
| 53 |
|
4z |
|- 4 e. ZZ |
| 54 |
|
fzonel |
|- -. 4 e. ( 1 ..^ 4 ) |
| 55 |
|
fzoval |
|- ( 4 e. ZZ -> ( 1 ..^ 4 ) = ( 1 ... ( 4 - 1 ) ) ) |
| 56 |
53 55
|
ax-mp |
|- ( 1 ..^ 4 ) = ( 1 ... ( 4 - 1 ) ) |
| 57 |
|
4cn |
|- 4 e. CC |
| 58 |
|
ax-1cn |
|- 1 e. CC |
| 59 |
|
3cn |
|- 3 e. CC |
| 60 |
|
3p1e4 |
|- ( 3 + 1 ) = 4 |
| 61 |
|
subadd2 |
|- ( ( 4 e. CC /\ 1 e. CC /\ 3 e. CC ) -> ( ( 4 - 1 ) = 3 <-> ( 3 + 1 ) = 4 ) ) |
| 62 |
60 61
|
mpbiri |
|- ( ( 4 e. CC /\ 1 e. CC /\ 3 e. CC ) -> ( 4 - 1 ) = 3 ) |
| 63 |
57 58 59 62
|
mp3an |
|- ( 4 - 1 ) = 3 |
| 64 |
63
|
oveq2i |
|- ( 1 ... ( 4 - 1 ) ) = ( 1 ... 3 ) |
| 65 |
56 64
|
eqtri |
|- ( 1 ..^ 4 ) = ( 1 ... 3 ) |
| 66 |
65
|
eqcomi |
|- ( 1 ... 3 ) = ( 1 ..^ 4 ) |
| 67 |
66
|
eleq2i |
|- ( 4 e. ( 1 ... 3 ) <-> 4 e. ( 1 ..^ 4 ) ) |
| 68 |
54 67
|
mtbir |
|- -. 4 e. ( 1 ... 3 ) |
| 69 |
53 68
|
pm3.2i |
|- ( 4 e. ZZ /\ -. 4 e. ( 1 ... 3 ) ) |
| 70 |
69
|
a1i |
|- ( ( N e. ( ZZ>= ` ; 1 2 ) /\ g : ( 1 ... 3 ) --> Prime ) -> ( 4 e. ZZ /\ -. 4 e. ( 1 ... 3 ) ) ) |
| 71 |
|
3prm |
|- 3 e. Prime |
| 72 |
71
|
a1i |
|- ( ( N e. ( ZZ>= ` ; 1 2 ) /\ g : ( 1 ... 3 ) --> Prime ) -> 3 e. Prime ) |
| 73 |
|
fsnunf |
|- ( ( g : ( 1 ... 3 ) --> Prime /\ ( 4 e. ZZ /\ -. 4 e. ( 1 ... 3 ) ) /\ 3 e. Prime ) -> ( g u. { <. 4 , 3 >. } ) : ( ( 1 ... 3 ) u. { 4 } ) --> Prime ) |
| 74 |
52 70 72 73
|
syl3anc |
|- ( ( N e. ( ZZ>= ` ; 1 2 ) /\ g : ( 1 ... 3 ) --> Prime ) -> ( g u. { <. 4 , 3 >. } ) : ( ( 1 ... 3 ) u. { 4 } ) --> Prime ) |
| 75 |
|
fzval3 |
|- ( 4 e. ZZ -> ( 1 ... 4 ) = ( 1 ..^ ( 4 + 1 ) ) ) |
| 76 |
53 75
|
ax-mp |
|- ( 1 ... 4 ) = ( 1 ..^ ( 4 + 1 ) ) |
| 77 |
|
1z |
|- 1 e. ZZ |
| 78 |
|
1re |
|- 1 e. RR |
| 79 |
|
1lt4 |
|- 1 < 4 |
| 80 |
78 23 79
|
ltleii |
|- 1 <_ 4 |
| 81 |
|
eluz2 |
|- ( 4 e. ( ZZ>= ` 1 ) <-> ( 1 e. ZZ /\ 4 e. ZZ /\ 1 <_ 4 ) ) |
| 82 |
77 53 80 81
|
mpbir3an |
|- 4 e. ( ZZ>= ` 1 ) |
| 83 |
|
fzosplitsn |
|- ( 4 e. ( ZZ>= ` 1 ) -> ( 1 ..^ ( 4 + 1 ) ) = ( ( 1 ..^ 4 ) u. { 4 } ) ) |
| 84 |
82 83
|
ax-mp |
|- ( 1 ..^ ( 4 + 1 ) ) = ( ( 1 ..^ 4 ) u. { 4 } ) |
| 85 |
65
|
uneq1i |
|- ( ( 1 ..^ 4 ) u. { 4 } ) = ( ( 1 ... 3 ) u. { 4 } ) |
| 86 |
76 84 85
|
3eqtri |
|- ( 1 ... 4 ) = ( ( 1 ... 3 ) u. { 4 } ) |
| 87 |
86
|
feq2i |
|- ( ( g u. { <. 4 , 3 >. } ) : ( 1 ... 4 ) --> Prime <-> ( g u. { <. 4 , 3 >. } ) : ( ( 1 ... 3 ) u. { 4 } ) --> Prime ) |
| 88 |
74 87
|
sylibr |
|- ( ( N e. ( ZZ>= ` ; 1 2 ) /\ g : ( 1 ... 3 ) --> Prime ) -> ( g u. { <. 4 , 3 >. } ) : ( 1 ... 4 ) --> Prime ) |
| 89 |
|
prmex |
|- Prime e. _V |
| 90 |
|
ovex |
|- ( 1 ... 4 ) e. _V |
| 91 |
89 90
|
pm3.2i |
|- ( Prime e. _V /\ ( 1 ... 4 ) e. _V ) |
| 92 |
|
elmapg |
|- ( ( Prime e. _V /\ ( 1 ... 4 ) e. _V ) -> ( ( g u. { <. 4 , 3 >. } ) e. ( Prime ^m ( 1 ... 4 ) ) <-> ( g u. { <. 4 , 3 >. } ) : ( 1 ... 4 ) --> Prime ) ) |
| 93 |
91 92
|
mp1i |
|- ( ( N e. ( ZZ>= ` ; 1 2 ) /\ g : ( 1 ... 3 ) --> Prime ) -> ( ( g u. { <. 4 , 3 >. } ) e. ( Prime ^m ( 1 ... 4 ) ) <-> ( g u. { <. 4 , 3 >. } ) : ( 1 ... 4 ) --> Prime ) ) |
| 94 |
88 93
|
mpbird |
|- ( ( N e. ( ZZ>= ` ; 1 2 ) /\ g : ( 1 ... 3 ) --> Prime ) -> ( g u. { <. 4 , 3 >. } ) e. ( Prime ^m ( 1 ... 4 ) ) ) |
| 95 |
94
|
adantr |
|- ( ( ( N e. ( ZZ>= ` ; 1 2 ) /\ g : ( 1 ... 3 ) --> Prime ) /\ ( N - 3 ) = sum_ k e. ( 1 ... 3 ) ( g ` k ) ) -> ( g u. { <. 4 , 3 >. } ) e. ( Prime ^m ( 1 ... 4 ) ) ) |
| 96 |
|
fveq1 |
|- ( f = ( g u. { <. 4 , 3 >. } ) -> ( f ` k ) = ( ( g u. { <. 4 , 3 >. } ) ` k ) ) |
| 97 |
96
|
sumeq2sdv |
|- ( f = ( g u. { <. 4 , 3 >. } ) -> sum_ k e. ( 1 ... 4 ) ( f ` k ) = sum_ k e. ( 1 ... 4 ) ( ( g u. { <. 4 , 3 >. } ) ` k ) ) |
| 98 |
97
|
eqeq2d |
|- ( f = ( g u. { <. 4 , 3 >. } ) -> ( N = sum_ k e. ( 1 ... 4 ) ( f ` k ) <-> N = sum_ k e. ( 1 ... 4 ) ( ( g u. { <. 4 , 3 >. } ) ` k ) ) ) |
| 99 |
98
|
adantl |
|- ( ( ( ( N e. ( ZZ>= ` ; 1 2 ) /\ g : ( 1 ... 3 ) --> Prime ) /\ ( N - 3 ) = sum_ k e. ( 1 ... 3 ) ( g ` k ) ) /\ f = ( g u. { <. 4 , 3 >. } ) ) -> ( N = sum_ k e. ( 1 ... 4 ) ( f ` k ) <-> N = sum_ k e. ( 1 ... 4 ) ( ( g u. { <. 4 , 3 >. } ) ` k ) ) ) |
| 100 |
82
|
a1i |
|- ( ( N e. ( ZZ>= ` ; 1 2 ) /\ g : ( 1 ... 3 ) --> Prime ) -> 4 e. ( ZZ>= ` 1 ) ) |
| 101 |
86
|
eleq2i |
|- ( k e. ( 1 ... 4 ) <-> k e. ( ( 1 ... 3 ) u. { 4 } ) ) |
| 102 |
|
elun |
|- ( k e. ( ( 1 ... 3 ) u. { 4 } ) <-> ( k e. ( 1 ... 3 ) \/ k e. { 4 } ) ) |
| 103 |
|
velsn |
|- ( k e. { 4 } <-> k = 4 ) |
| 104 |
103
|
orbi2i |
|- ( ( k e. ( 1 ... 3 ) \/ k e. { 4 } ) <-> ( k e. ( 1 ... 3 ) \/ k = 4 ) ) |
| 105 |
101 102 104
|
3bitri |
|- ( k e. ( 1 ... 4 ) <-> ( k e. ( 1 ... 3 ) \/ k = 4 ) ) |
| 106 |
|
elfz2 |
|- ( k e. ( 1 ... 3 ) <-> ( ( 1 e. ZZ /\ 3 e. ZZ /\ k e. ZZ ) /\ ( 1 <_ k /\ k <_ 3 ) ) ) |
| 107 |
20 23
|
pm3.2i |
|- ( 3 e. RR /\ 4 e. RR ) |
| 108 |
|
3lt4 |
|- 3 < 4 |
| 109 |
|
ltnle |
|- ( ( 3 e. RR /\ 4 e. RR ) -> ( 3 < 4 <-> -. 4 <_ 3 ) ) |
| 110 |
108 109
|
mpbii |
|- ( ( 3 e. RR /\ 4 e. RR ) -> -. 4 <_ 3 ) |
| 111 |
107 110
|
ax-mp |
|- -. 4 <_ 3 |
| 112 |
|
breq1 |
|- ( k = 4 -> ( k <_ 3 <-> 4 <_ 3 ) ) |
| 113 |
112
|
eqcoms |
|- ( 4 = k -> ( k <_ 3 <-> 4 <_ 3 ) ) |
| 114 |
111 113
|
mtbiri |
|- ( 4 = k -> -. k <_ 3 ) |
| 115 |
114
|
a1i |
|- ( k e. ZZ -> ( 4 = k -> -. k <_ 3 ) ) |
| 116 |
115
|
necon2ad |
|- ( k e. ZZ -> ( k <_ 3 -> 4 =/= k ) ) |
| 117 |
116
|
adantld |
|- ( k e. ZZ -> ( ( 1 <_ k /\ k <_ 3 ) -> 4 =/= k ) ) |
| 118 |
117
|
3ad2ant3 |
|- ( ( 1 e. ZZ /\ 3 e. ZZ /\ k e. ZZ ) -> ( ( 1 <_ k /\ k <_ 3 ) -> 4 =/= k ) ) |
| 119 |
118
|
imp |
|- ( ( ( 1 e. ZZ /\ 3 e. ZZ /\ k e. ZZ ) /\ ( 1 <_ k /\ k <_ 3 ) ) -> 4 =/= k ) |
| 120 |
106 119
|
sylbi |
|- ( k e. ( 1 ... 3 ) -> 4 =/= k ) |
| 121 |
120
|
adantr |
|- ( ( k e. ( 1 ... 3 ) /\ g : ( 1 ... 3 ) --> Prime ) -> 4 =/= k ) |
| 122 |
|
fvunsn |
|- ( 4 =/= k -> ( ( g u. { <. 4 , 3 >. } ) ` k ) = ( g ` k ) ) |
| 123 |
121 122
|
syl |
|- ( ( k e. ( 1 ... 3 ) /\ g : ( 1 ... 3 ) --> Prime ) -> ( ( g u. { <. 4 , 3 >. } ) ` k ) = ( g ` k ) ) |
| 124 |
|
ffvelcdm |
|- ( ( g : ( 1 ... 3 ) --> Prime /\ k e. ( 1 ... 3 ) ) -> ( g ` k ) e. Prime ) |
| 125 |
124
|
ancoms |
|- ( ( k e. ( 1 ... 3 ) /\ g : ( 1 ... 3 ) --> Prime ) -> ( g ` k ) e. Prime ) |
| 126 |
|
prmz |
|- ( ( g ` k ) e. Prime -> ( g ` k ) e. ZZ ) |
| 127 |
125 126
|
syl |
|- ( ( k e. ( 1 ... 3 ) /\ g : ( 1 ... 3 ) --> Prime ) -> ( g ` k ) e. ZZ ) |
| 128 |
127
|
zcnd |
|- ( ( k e. ( 1 ... 3 ) /\ g : ( 1 ... 3 ) --> Prime ) -> ( g ` k ) e. CC ) |
| 129 |
123 128
|
eqeltrd |
|- ( ( k e. ( 1 ... 3 ) /\ g : ( 1 ... 3 ) --> Prime ) -> ( ( g u. { <. 4 , 3 >. } ) ` k ) e. CC ) |
| 130 |
129
|
ex |
|- ( k e. ( 1 ... 3 ) -> ( g : ( 1 ... 3 ) --> Prime -> ( ( g u. { <. 4 , 3 >. } ) ` k ) e. CC ) ) |
| 131 |
130
|
adantld |
|- ( k e. ( 1 ... 3 ) -> ( ( N e. ( ZZ>= ` ; 1 2 ) /\ g : ( 1 ... 3 ) --> Prime ) -> ( ( g u. { <. 4 , 3 >. } ) ` k ) e. CC ) ) |
| 132 |
|
fveq2 |
|- ( k = 4 -> ( ( g u. { <. 4 , 3 >. } ) ` k ) = ( ( g u. { <. 4 , 3 >. } ) ` 4 ) ) |
| 133 |
53
|
a1i |
|- ( g : ( 1 ... 3 ) --> Prime -> 4 e. ZZ ) |
| 134 |
5
|
a1i |
|- ( g : ( 1 ... 3 ) --> Prime -> 3 e. ZZ ) |
| 135 |
|
fdm |
|- ( g : ( 1 ... 3 ) --> Prime -> dom g = ( 1 ... 3 ) ) |
| 136 |
|
eleq2 |
|- ( dom g = ( 1 ... 3 ) -> ( 4 e. dom g <-> 4 e. ( 1 ... 3 ) ) ) |
| 137 |
68 136
|
mtbiri |
|- ( dom g = ( 1 ... 3 ) -> -. 4 e. dom g ) |
| 138 |
135 137
|
syl |
|- ( g : ( 1 ... 3 ) --> Prime -> -. 4 e. dom g ) |
| 139 |
|
fsnunfv |
|- ( ( 4 e. ZZ /\ 3 e. ZZ /\ -. 4 e. dom g ) -> ( ( g u. { <. 4 , 3 >. } ) ` 4 ) = 3 ) |
| 140 |
133 134 138 139
|
syl3anc |
|- ( g : ( 1 ... 3 ) --> Prime -> ( ( g u. { <. 4 , 3 >. } ) ` 4 ) = 3 ) |
| 141 |
140
|
adantl |
|- ( ( N e. ( ZZ>= ` ; 1 2 ) /\ g : ( 1 ... 3 ) --> Prime ) -> ( ( g u. { <. 4 , 3 >. } ) ` 4 ) = 3 ) |
| 142 |
132 141
|
sylan9eq |
|- ( ( k = 4 /\ ( N e. ( ZZ>= ` ; 1 2 ) /\ g : ( 1 ... 3 ) --> Prime ) ) -> ( ( g u. { <. 4 , 3 >. } ) ` k ) = 3 ) |
| 143 |
142 59
|
eqeltrdi |
|- ( ( k = 4 /\ ( N e. ( ZZ>= ` ; 1 2 ) /\ g : ( 1 ... 3 ) --> Prime ) ) -> ( ( g u. { <. 4 , 3 >. } ) ` k ) e. CC ) |
| 144 |
143
|
ex |
|- ( k = 4 -> ( ( N e. ( ZZ>= ` ; 1 2 ) /\ g : ( 1 ... 3 ) --> Prime ) -> ( ( g u. { <. 4 , 3 >. } ) ` k ) e. CC ) ) |
| 145 |
131 144
|
jaoi |
|- ( ( k e. ( 1 ... 3 ) \/ k = 4 ) -> ( ( N e. ( ZZ>= ` ; 1 2 ) /\ g : ( 1 ... 3 ) --> Prime ) -> ( ( g u. { <. 4 , 3 >. } ) ` k ) e. CC ) ) |
| 146 |
145
|
com12 |
|- ( ( N e. ( ZZ>= ` ; 1 2 ) /\ g : ( 1 ... 3 ) --> Prime ) -> ( ( k e. ( 1 ... 3 ) \/ k = 4 ) -> ( ( g u. { <. 4 , 3 >. } ) ` k ) e. CC ) ) |
| 147 |
105 146
|
biimtrid |
|- ( ( N e. ( ZZ>= ` ; 1 2 ) /\ g : ( 1 ... 3 ) --> Prime ) -> ( k e. ( 1 ... 4 ) -> ( ( g u. { <. 4 , 3 >. } ) ` k ) e. CC ) ) |
| 148 |
147
|
imp |
|- ( ( ( N e. ( ZZ>= ` ; 1 2 ) /\ g : ( 1 ... 3 ) --> Prime ) /\ k e. ( 1 ... 4 ) ) -> ( ( g u. { <. 4 , 3 >. } ) ` k ) e. CC ) |
| 149 |
100 148 132
|
fsumm1 |
|- ( ( N e. ( ZZ>= ` ; 1 2 ) /\ g : ( 1 ... 3 ) --> Prime ) -> sum_ k e. ( 1 ... 4 ) ( ( g u. { <. 4 , 3 >. } ) ` k ) = ( sum_ k e. ( 1 ... ( 4 - 1 ) ) ( ( g u. { <. 4 , 3 >. } ) ` k ) + ( ( g u. { <. 4 , 3 >. } ) ` 4 ) ) ) |
| 150 |
149
|
adantr |
|- ( ( ( N e. ( ZZ>= ` ; 1 2 ) /\ g : ( 1 ... 3 ) --> Prime ) /\ ( N - 3 ) = sum_ k e. ( 1 ... 3 ) ( g ` k ) ) -> sum_ k e. ( 1 ... 4 ) ( ( g u. { <. 4 , 3 >. } ) ` k ) = ( sum_ k e. ( 1 ... ( 4 - 1 ) ) ( ( g u. { <. 4 , 3 >. } ) ` k ) + ( ( g u. { <. 4 , 3 >. } ) ` 4 ) ) ) |
| 151 |
63
|
eqcomi |
|- 3 = ( 4 - 1 ) |
| 152 |
151
|
oveq2i |
|- ( 1 ... 3 ) = ( 1 ... ( 4 - 1 ) ) |
| 153 |
152
|
a1i |
|- ( ( N e. ( ZZ>= ` ; 1 2 ) /\ g : ( 1 ... 3 ) --> Prime ) -> ( 1 ... 3 ) = ( 1 ... ( 4 - 1 ) ) ) |
| 154 |
120
|
adantl |
|- ( ( ( N e. ( ZZ>= ` ; 1 2 ) /\ g : ( 1 ... 3 ) --> Prime ) /\ k e. ( 1 ... 3 ) ) -> 4 =/= k ) |
| 155 |
154 122
|
syl |
|- ( ( ( N e. ( ZZ>= ` ; 1 2 ) /\ g : ( 1 ... 3 ) --> Prime ) /\ k e. ( 1 ... 3 ) ) -> ( ( g u. { <. 4 , 3 >. } ) ` k ) = ( g ` k ) ) |
| 156 |
155
|
eqcomd |
|- ( ( ( N e. ( ZZ>= ` ; 1 2 ) /\ g : ( 1 ... 3 ) --> Prime ) /\ k e. ( 1 ... 3 ) ) -> ( g ` k ) = ( ( g u. { <. 4 , 3 >. } ) ` k ) ) |
| 157 |
153 156
|
sumeq12dv |
|- ( ( N e. ( ZZ>= ` ; 1 2 ) /\ g : ( 1 ... 3 ) --> Prime ) -> sum_ k e. ( 1 ... 3 ) ( g ` k ) = sum_ k e. ( 1 ... ( 4 - 1 ) ) ( ( g u. { <. 4 , 3 >. } ) ` k ) ) |
| 158 |
157
|
eqeq2d |
|- ( ( N e. ( ZZ>= ` ; 1 2 ) /\ g : ( 1 ... 3 ) --> Prime ) -> ( ( N - 3 ) = sum_ k e. ( 1 ... 3 ) ( g ` k ) <-> ( N - 3 ) = sum_ k e. ( 1 ... ( 4 - 1 ) ) ( ( g u. { <. 4 , 3 >. } ) ` k ) ) ) |
| 159 |
158
|
biimpa |
|- ( ( ( N e. ( ZZ>= ` ; 1 2 ) /\ g : ( 1 ... 3 ) --> Prime ) /\ ( N - 3 ) = sum_ k e. ( 1 ... 3 ) ( g ` k ) ) -> ( N - 3 ) = sum_ k e. ( 1 ... ( 4 - 1 ) ) ( ( g u. { <. 4 , 3 >. } ) ` k ) ) |
| 160 |
159
|
eqcomd |
|- ( ( ( N e. ( ZZ>= ` ; 1 2 ) /\ g : ( 1 ... 3 ) --> Prime ) /\ ( N - 3 ) = sum_ k e. ( 1 ... 3 ) ( g ` k ) ) -> sum_ k e. ( 1 ... ( 4 - 1 ) ) ( ( g u. { <. 4 , 3 >. } ) ` k ) = ( N - 3 ) ) |
| 161 |
160
|
oveq1d |
|- ( ( ( N e. ( ZZ>= ` ; 1 2 ) /\ g : ( 1 ... 3 ) --> Prime ) /\ ( N - 3 ) = sum_ k e. ( 1 ... 3 ) ( g ` k ) ) -> ( sum_ k e. ( 1 ... ( 4 - 1 ) ) ( ( g u. { <. 4 , 3 >. } ) ` k ) + ( ( g u. { <. 4 , 3 >. } ) ` 4 ) ) = ( ( N - 3 ) + ( ( g u. { <. 4 , 3 >. } ) ` 4 ) ) ) |
| 162 |
53
|
a1i |
|- ( ( N e. ( ZZ>= ` ; 1 2 ) /\ g : ( 1 ... 3 ) --> Prime ) -> 4 e. ZZ ) |
| 163 |
5
|
a1i |
|- ( ( N e. ( ZZ>= ` ; 1 2 ) /\ g : ( 1 ... 3 ) --> Prime ) -> 3 e. ZZ ) |
| 164 |
138
|
adantl |
|- ( ( N e. ( ZZ>= ` ; 1 2 ) /\ g : ( 1 ... 3 ) --> Prime ) -> -. 4 e. dom g ) |
| 165 |
162 163 164 139
|
syl3anc |
|- ( ( N e. ( ZZ>= ` ; 1 2 ) /\ g : ( 1 ... 3 ) --> Prime ) -> ( ( g u. { <. 4 , 3 >. } ) ` 4 ) = 3 ) |
| 166 |
165
|
oveq2d |
|- ( ( N e. ( ZZ>= ` ; 1 2 ) /\ g : ( 1 ... 3 ) --> Prime ) -> ( ( N - 3 ) + ( ( g u. { <. 4 , 3 >. } ) ` 4 ) ) = ( ( N - 3 ) + 3 ) ) |
| 167 |
|
eluzelcn |
|- ( N e. ( ZZ>= ` ; 1 2 ) -> N e. CC ) |
| 168 |
59
|
a1i |
|- ( N e. ( ZZ>= ` ; 1 2 ) -> 3 e. CC ) |
| 169 |
167 168
|
npcand |
|- ( N e. ( ZZ>= ` ; 1 2 ) -> ( ( N - 3 ) + 3 ) = N ) |
| 170 |
169
|
adantr |
|- ( ( N e. ( ZZ>= ` ; 1 2 ) /\ g : ( 1 ... 3 ) --> Prime ) -> ( ( N - 3 ) + 3 ) = N ) |
| 171 |
166 170
|
eqtrd |
|- ( ( N e. ( ZZ>= ` ; 1 2 ) /\ g : ( 1 ... 3 ) --> Prime ) -> ( ( N - 3 ) + ( ( g u. { <. 4 , 3 >. } ) ` 4 ) ) = N ) |
| 172 |
171
|
adantr |
|- ( ( ( N e. ( ZZ>= ` ; 1 2 ) /\ g : ( 1 ... 3 ) --> Prime ) /\ ( N - 3 ) = sum_ k e. ( 1 ... 3 ) ( g ` k ) ) -> ( ( N - 3 ) + ( ( g u. { <. 4 , 3 >. } ) ` 4 ) ) = N ) |
| 173 |
150 161 172
|
3eqtrrd |
|- ( ( ( N e. ( ZZ>= ` ; 1 2 ) /\ g : ( 1 ... 3 ) --> Prime ) /\ ( N - 3 ) = sum_ k e. ( 1 ... 3 ) ( g ` k ) ) -> N = sum_ k e. ( 1 ... 4 ) ( ( g u. { <. 4 , 3 >. } ) ` k ) ) |
| 174 |
95 99 173
|
rspcedvd |
|- ( ( ( N e. ( ZZ>= ` ; 1 2 ) /\ g : ( 1 ... 3 ) --> Prime ) /\ ( N - 3 ) = sum_ k e. ( 1 ... 3 ) ( g ` k ) ) -> E. f e. ( Prime ^m ( 1 ... 4 ) ) N = sum_ k e. ( 1 ... 4 ) ( f ` k ) ) |
| 175 |
174
|
ex |
|- ( ( N e. ( ZZ>= ` ; 1 2 ) /\ g : ( 1 ... 3 ) --> Prime ) -> ( ( N - 3 ) = sum_ k e. ( 1 ... 3 ) ( g ` k ) -> E. f e. ( Prime ^m ( 1 ... 4 ) ) N = sum_ k e. ( 1 ... 4 ) ( f ` k ) ) ) |
| 176 |
175
|
expcom |
|- ( g : ( 1 ... 3 ) --> Prime -> ( N e. ( ZZ>= ` ; 1 2 ) -> ( ( N - 3 ) = sum_ k e. ( 1 ... 3 ) ( g ` k ) -> E. f e. ( Prime ^m ( 1 ... 4 ) ) N = sum_ k e. ( 1 ... 4 ) ( f ` k ) ) ) ) |
| 177 |
|
elmapi |
|- ( g e. ( Prime ^m ( 1 ... 3 ) ) -> g : ( 1 ... 3 ) --> Prime ) |
| 178 |
176 177
|
syl11 |
|- ( N e. ( ZZ>= ` ; 1 2 ) -> ( g e. ( Prime ^m ( 1 ... 3 ) ) -> ( ( N - 3 ) = sum_ k e. ( 1 ... 3 ) ( g ` k ) -> E. f e. ( Prime ^m ( 1 ... 4 ) ) N = sum_ k e. ( 1 ... 4 ) ( f ` k ) ) ) ) |
| 179 |
178
|
rexlimdv |
|- ( N e. ( ZZ>= ` ; 1 2 ) -> ( E. g e. ( Prime ^m ( 1 ... 3 ) ) ( N - 3 ) = sum_ k e. ( 1 ... 3 ) ( g ` k ) -> E. f e. ( Prime ^m ( 1 ... 4 ) ) N = sum_ k e. ( 1 ... 4 ) ( f ` k ) ) ) |
| 180 |
179
|
adantr |
|- ( ( N e. ( ZZ>= ` ; 1 2 ) /\ N e. Even ) -> ( E. g e. ( Prime ^m ( 1 ... 3 ) ) ( N - 3 ) = sum_ k e. ( 1 ... 3 ) ( g ` k ) -> E. f e. ( Prime ^m ( 1 ... 4 ) ) N = sum_ k e. ( 1 ... 4 ) ( f ` k ) ) ) |
| 181 |
180
|
ad3antlr |
|- ( ( ( ( A. m e. Odd ( 7 < m -> m e. GoldbachOdd ) /\ ( N e. ( ZZ>= ` ; 1 2 ) /\ N e. Even ) ) /\ o e. GoldbachOdd ) /\ N = ( o + 3 ) ) -> ( E. g e. ( Prime ^m ( 1 ... 3 ) ) ( N - 3 ) = sum_ k e. ( 1 ... 3 ) ( g ` k ) -> E. f e. ( Prime ^m ( 1 ... 4 ) ) N = sum_ k e. ( 1 ... 4 ) ( f ` k ) ) ) |
| 182 |
51 181
|
mpd |
|- ( ( ( ( A. m e. Odd ( 7 < m -> m e. GoldbachOdd ) /\ ( N e. ( ZZ>= ` ; 1 2 ) /\ N e. Even ) ) /\ o e. GoldbachOdd ) /\ N = ( o + 3 ) ) -> E. f e. ( Prime ^m ( 1 ... 4 ) ) N = sum_ k e. ( 1 ... 4 ) ( f ` k ) ) |
| 183 |
|
evengpoap3 |
|- ( A. m e. Odd ( 7 < m -> m e. GoldbachOdd ) -> ( ( N e. ( ZZ>= ` ; 1 2 ) /\ N e. Even ) -> E. o e. GoldbachOdd N = ( o + 3 ) ) ) |
| 184 |
183
|
imp |
|- ( ( A. m e. Odd ( 7 < m -> m e. GoldbachOdd ) /\ ( N e. ( ZZ>= ` ; 1 2 ) /\ N e. Even ) ) -> E. o e. GoldbachOdd N = ( o + 3 ) ) |
| 185 |
182 184
|
r19.29a |
|- ( ( A. m e. Odd ( 7 < m -> m e. GoldbachOdd ) /\ ( N e. ( ZZ>= ` ; 1 2 ) /\ N e. Even ) ) -> E. f e. ( Prime ^m ( 1 ... 4 ) ) N = sum_ k e. ( 1 ... 4 ) ( f ` k ) ) |
| 186 |
185
|
ex |
|- ( A. m e. Odd ( 7 < m -> m e. GoldbachOdd ) -> ( ( N e. ( ZZ>= ` ; 1 2 ) /\ N e. Even ) -> E. f e. ( Prime ^m ( 1 ... 4 ) ) N = sum_ k e. ( 1 ... 4 ) ( f ` k ) ) ) |