Step |
Hyp |
Ref |
Expression |
1 |
|
3odd |
|- 3 e. Odd |
2 |
1
|
a1i |
|- ( N e. ( ZZ>= ` ; 1 2 ) -> 3 e. Odd ) |
3 |
2
|
anim1i |
|- ( ( N e. ( ZZ>= ` ; 1 2 ) /\ N e. Even ) -> ( 3 e. Odd /\ N e. Even ) ) |
4 |
3
|
ancomd |
|- ( ( N e. ( ZZ>= ` ; 1 2 ) /\ N e. Even ) -> ( N e. Even /\ 3 e. Odd ) ) |
5 |
|
emoo |
|- ( ( N e. Even /\ 3 e. Odd ) -> ( N - 3 ) e. Odd ) |
6 |
4 5
|
syl |
|- ( ( N e. ( ZZ>= ` ; 1 2 ) /\ N e. Even ) -> ( N - 3 ) e. Odd ) |
7 |
|
breq2 |
|- ( m = ( N - 3 ) -> ( 7 < m <-> 7 < ( N - 3 ) ) ) |
8 |
|
eleq1 |
|- ( m = ( N - 3 ) -> ( m e. GoldbachOdd <-> ( N - 3 ) e. GoldbachOdd ) ) |
9 |
7 8
|
imbi12d |
|- ( m = ( N - 3 ) -> ( ( 7 < m -> m e. GoldbachOdd ) <-> ( 7 < ( N - 3 ) -> ( N - 3 ) e. GoldbachOdd ) ) ) |
10 |
9
|
adantl |
|- ( ( ( N e. ( ZZ>= ` ; 1 2 ) /\ N e. Even ) /\ m = ( N - 3 ) ) -> ( ( 7 < m -> m e. GoldbachOdd ) <-> ( 7 < ( N - 3 ) -> ( N - 3 ) e. GoldbachOdd ) ) ) |
11 |
6 10
|
rspcdv |
|- ( ( N e. ( ZZ>= ` ; 1 2 ) /\ N e. Even ) -> ( A. m e. Odd ( 7 < m -> m e. GoldbachOdd ) -> ( 7 < ( N - 3 ) -> ( N - 3 ) e. GoldbachOdd ) ) ) |
12 |
|
eluz2 |
|- ( N e. ( ZZ>= ` ; 1 2 ) <-> ( ; 1 2 e. ZZ /\ N e. ZZ /\ ; 1 2 <_ N ) ) |
13 |
|
7p3e10 |
|- ( 7 + 3 ) = ; 1 0 |
14 |
|
1nn0 |
|- 1 e. NN0 |
15 |
|
0nn0 |
|- 0 e. NN0 |
16 |
|
2nn |
|- 2 e. NN |
17 |
|
2pos |
|- 0 < 2 |
18 |
14 15 16 17
|
declt |
|- ; 1 0 < ; 1 2 |
19 |
13 18
|
eqbrtri |
|- ( 7 + 3 ) < ; 1 2 |
20 |
|
7re |
|- 7 e. RR |
21 |
|
3re |
|- 3 e. RR |
22 |
20 21
|
readdcli |
|- ( 7 + 3 ) e. RR |
23 |
|
2nn0 |
|- 2 e. NN0 |
24 |
14 23
|
deccl |
|- ; 1 2 e. NN0 |
25 |
24
|
nn0rei |
|- ; 1 2 e. RR |
26 |
|
zre |
|- ( N e. ZZ -> N e. RR ) |
27 |
|
ltletr |
|- ( ( ( 7 + 3 ) e. RR /\ ; 1 2 e. RR /\ N e. RR ) -> ( ( ( 7 + 3 ) < ; 1 2 /\ ; 1 2 <_ N ) -> ( 7 + 3 ) < N ) ) |
28 |
22 25 26 27
|
mp3an12i |
|- ( N e. ZZ -> ( ( ( 7 + 3 ) < ; 1 2 /\ ; 1 2 <_ N ) -> ( 7 + 3 ) < N ) ) |
29 |
19 28
|
mpani |
|- ( N e. ZZ -> ( ; 1 2 <_ N -> ( 7 + 3 ) < N ) ) |
30 |
29
|
imp |
|- ( ( N e. ZZ /\ ; 1 2 <_ N ) -> ( 7 + 3 ) < N ) |
31 |
30
|
3adant1 |
|- ( ( ; 1 2 e. ZZ /\ N e. ZZ /\ ; 1 2 <_ N ) -> ( 7 + 3 ) < N ) |
32 |
20
|
a1i |
|- ( ( ; 1 2 e. ZZ /\ N e. ZZ /\ ; 1 2 <_ N ) -> 7 e. RR ) |
33 |
21
|
a1i |
|- ( ( ; 1 2 e. ZZ /\ N e. ZZ /\ ; 1 2 <_ N ) -> 3 e. RR ) |
34 |
26
|
3ad2ant2 |
|- ( ( ; 1 2 e. ZZ /\ N e. ZZ /\ ; 1 2 <_ N ) -> N e. RR ) |
35 |
32 33 34
|
ltaddsubd |
|- ( ( ; 1 2 e. ZZ /\ N e. ZZ /\ ; 1 2 <_ N ) -> ( ( 7 + 3 ) < N <-> 7 < ( N - 3 ) ) ) |
36 |
31 35
|
mpbid |
|- ( ( ; 1 2 e. ZZ /\ N e. ZZ /\ ; 1 2 <_ N ) -> 7 < ( N - 3 ) ) |
37 |
12 36
|
sylbi |
|- ( N e. ( ZZ>= ` ; 1 2 ) -> 7 < ( N - 3 ) ) |
38 |
37
|
adantr |
|- ( ( N e. ( ZZ>= ` ; 1 2 ) /\ N e. Even ) -> 7 < ( N - 3 ) ) |
39 |
|
simpr |
|- ( ( ( N e. ( ZZ>= ` ; 1 2 ) /\ N e. Even ) /\ ( N - 3 ) e. GoldbachOdd ) -> ( N - 3 ) e. GoldbachOdd ) |
40 |
|
oveq1 |
|- ( o = ( N - 3 ) -> ( o + 3 ) = ( ( N - 3 ) + 3 ) ) |
41 |
40
|
eqeq2d |
|- ( o = ( N - 3 ) -> ( N = ( o + 3 ) <-> N = ( ( N - 3 ) + 3 ) ) ) |
42 |
41
|
adantl |
|- ( ( ( ( N e. ( ZZ>= ` ; 1 2 ) /\ N e. Even ) /\ ( N - 3 ) e. GoldbachOdd ) /\ o = ( N - 3 ) ) -> ( N = ( o + 3 ) <-> N = ( ( N - 3 ) + 3 ) ) ) |
43 |
|
eluzelcn |
|- ( N e. ( ZZ>= ` ; 1 2 ) -> N e. CC ) |
44 |
|
3cn |
|- 3 e. CC |
45 |
43 44
|
jctir |
|- ( N e. ( ZZ>= ` ; 1 2 ) -> ( N e. CC /\ 3 e. CC ) ) |
46 |
45
|
adantr |
|- ( ( N e. ( ZZ>= ` ; 1 2 ) /\ N e. Even ) -> ( N e. CC /\ 3 e. CC ) ) |
47 |
46
|
adantr |
|- ( ( ( N e. ( ZZ>= ` ; 1 2 ) /\ N e. Even ) /\ ( N - 3 ) e. GoldbachOdd ) -> ( N e. CC /\ 3 e. CC ) ) |
48 |
|
npcan |
|- ( ( N e. CC /\ 3 e. CC ) -> ( ( N - 3 ) + 3 ) = N ) |
49 |
48
|
eqcomd |
|- ( ( N e. CC /\ 3 e. CC ) -> N = ( ( N - 3 ) + 3 ) ) |
50 |
47 49
|
syl |
|- ( ( ( N e. ( ZZ>= ` ; 1 2 ) /\ N e. Even ) /\ ( N - 3 ) e. GoldbachOdd ) -> N = ( ( N - 3 ) + 3 ) ) |
51 |
39 42 50
|
rspcedvd |
|- ( ( ( N e. ( ZZ>= ` ; 1 2 ) /\ N e. Even ) /\ ( N - 3 ) e. GoldbachOdd ) -> E. o e. GoldbachOdd N = ( o + 3 ) ) |
52 |
51
|
ex |
|- ( ( N e. ( ZZ>= ` ; 1 2 ) /\ N e. Even ) -> ( ( N - 3 ) e. GoldbachOdd -> E. o e. GoldbachOdd N = ( o + 3 ) ) ) |
53 |
38 52
|
embantd |
|- ( ( N e. ( ZZ>= ` ; 1 2 ) /\ N e. Even ) -> ( ( 7 < ( N - 3 ) -> ( N - 3 ) e. GoldbachOdd ) -> E. o e. GoldbachOdd N = ( o + 3 ) ) ) |
54 |
11 53
|
syldc |
|- ( A. m e. Odd ( 7 < m -> m e. GoldbachOdd ) -> ( ( N e. ( ZZ>= ` ; 1 2 ) /\ N e. Even ) -> E. o e. GoldbachOdd N = ( o + 3 ) ) ) |