| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 3odd | ⊢ 3  ∈   Odd | 
						
							| 2 | 1 | a1i | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ ; 1 2 )  →  3  ∈   Odd  ) | 
						
							| 3 | 2 | anim1i | ⊢ ( ( 𝑁  ∈  ( ℤ≥ ‘ ; 1 2 )  ∧  𝑁  ∈   Even  )  →  ( 3  ∈   Odd   ∧  𝑁  ∈   Even  ) ) | 
						
							| 4 | 3 | ancomd | ⊢ ( ( 𝑁  ∈  ( ℤ≥ ‘ ; 1 2 )  ∧  𝑁  ∈   Even  )  →  ( 𝑁  ∈   Even   ∧  3  ∈   Odd  ) ) | 
						
							| 5 |  | emoo | ⊢ ( ( 𝑁  ∈   Even   ∧  3  ∈   Odd  )  →  ( 𝑁  −  3 )  ∈   Odd  ) | 
						
							| 6 | 4 5 | syl | ⊢ ( ( 𝑁  ∈  ( ℤ≥ ‘ ; 1 2 )  ∧  𝑁  ∈   Even  )  →  ( 𝑁  −  3 )  ∈   Odd  ) | 
						
							| 7 |  | breq2 | ⊢ ( 𝑚  =  ( 𝑁  −  3 )  →  ( 7  <  𝑚  ↔  7  <  ( 𝑁  −  3 ) ) ) | 
						
							| 8 |  | eleq1 | ⊢ ( 𝑚  =  ( 𝑁  −  3 )  →  ( 𝑚  ∈   GoldbachOdd   ↔  ( 𝑁  −  3 )  ∈   GoldbachOdd  ) ) | 
						
							| 9 | 7 8 | imbi12d | ⊢ ( 𝑚  =  ( 𝑁  −  3 )  →  ( ( 7  <  𝑚  →  𝑚  ∈   GoldbachOdd  )  ↔  ( 7  <  ( 𝑁  −  3 )  →  ( 𝑁  −  3 )  ∈   GoldbachOdd  ) ) ) | 
						
							| 10 | 9 | adantl | ⊢ ( ( ( 𝑁  ∈  ( ℤ≥ ‘ ; 1 2 )  ∧  𝑁  ∈   Even  )  ∧  𝑚  =  ( 𝑁  −  3 ) )  →  ( ( 7  <  𝑚  →  𝑚  ∈   GoldbachOdd  )  ↔  ( 7  <  ( 𝑁  −  3 )  →  ( 𝑁  −  3 )  ∈   GoldbachOdd  ) ) ) | 
						
							| 11 | 6 10 | rspcdv | ⊢ ( ( 𝑁  ∈  ( ℤ≥ ‘ ; 1 2 )  ∧  𝑁  ∈   Even  )  →  ( ∀ 𝑚  ∈   Odd  ( 7  <  𝑚  →  𝑚  ∈   GoldbachOdd  )  →  ( 7  <  ( 𝑁  −  3 )  →  ( 𝑁  −  3 )  ∈   GoldbachOdd  ) ) ) | 
						
							| 12 |  | eluz2 | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ ; 1 2 )  ↔  ( ; 1 2  ∈  ℤ  ∧  𝑁  ∈  ℤ  ∧  ; 1 2  ≤  𝑁 ) ) | 
						
							| 13 |  | 7p3e10 | ⊢ ( 7  +  3 )  =  ; 1 0 | 
						
							| 14 |  | 1nn0 | ⊢ 1  ∈  ℕ0 | 
						
							| 15 |  | 0nn0 | ⊢ 0  ∈  ℕ0 | 
						
							| 16 |  | 2nn | ⊢ 2  ∈  ℕ | 
						
							| 17 |  | 2pos | ⊢ 0  <  2 | 
						
							| 18 | 14 15 16 17 | declt | ⊢ ; 1 0  <  ; 1 2 | 
						
							| 19 | 13 18 | eqbrtri | ⊢ ( 7  +  3 )  <  ; 1 2 | 
						
							| 20 |  | 7re | ⊢ 7  ∈  ℝ | 
						
							| 21 |  | 3re | ⊢ 3  ∈  ℝ | 
						
							| 22 | 20 21 | readdcli | ⊢ ( 7  +  3 )  ∈  ℝ | 
						
							| 23 |  | 2nn0 | ⊢ 2  ∈  ℕ0 | 
						
							| 24 | 14 23 | deccl | ⊢ ; 1 2  ∈  ℕ0 | 
						
							| 25 | 24 | nn0rei | ⊢ ; 1 2  ∈  ℝ | 
						
							| 26 |  | zre | ⊢ ( 𝑁  ∈  ℤ  →  𝑁  ∈  ℝ ) | 
						
							| 27 |  | ltletr | ⊢ ( ( ( 7  +  3 )  ∈  ℝ  ∧  ; 1 2  ∈  ℝ  ∧  𝑁  ∈  ℝ )  →  ( ( ( 7  +  3 )  <  ; 1 2  ∧  ; 1 2  ≤  𝑁 )  →  ( 7  +  3 )  <  𝑁 ) ) | 
						
							| 28 | 22 25 26 27 | mp3an12i | ⊢ ( 𝑁  ∈  ℤ  →  ( ( ( 7  +  3 )  <  ; 1 2  ∧  ; 1 2  ≤  𝑁 )  →  ( 7  +  3 )  <  𝑁 ) ) | 
						
							| 29 | 19 28 | mpani | ⊢ ( 𝑁  ∈  ℤ  →  ( ; 1 2  ≤  𝑁  →  ( 7  +  3 )  <  𝑁 ) ) | 
						
							| 30 | 29 | imp | ⊢ ( ( 𝑁  ∈  ℤ  ∧  ; 1 2  ≤  𝑁 )  →  ( 7  +  3 )  <  𝑁 ) | 
						
							| 31 | 30 | 3adant1 | ⊢ ( ( ; 1 2  ∈  ℤ  ∧  𝑁  ∈  ℤ  ∧  ; 1 2  ≤  𝑁 )  →  ( 7  +  3 )  <  𝑁 ) | 
						
							| 32 | 20 | a1i | ⊢ ( ( ; 1 2  ∈  ℤ  ∧  𝑁  ∈  ℤ  ∧  ; 1 2  ≤  𝑁 )  →  7  ∈  ℝ ) | 
						
							| 33 | 21 | a1i | ⊢ ( ( ; 1 2  ∈  ℤ  ∧  𝑁  ∈  ℤ  ∧  ; 1 2  ≤  𝑁 )  →  3  ∈  ℝ ) | 
						
							| 34 | 26 | 3ad2ant2 | ⊢ ( ( ; 1 2  ∈  ℤ  ∧  𝑁  ∈  ℤ  ∧  ; 1 2  ≤  𝑁 )  →  𝑁  ∈  ℝ ) | 
						
							| 35 | 32 33 34 | ltaddsubd | ⊢ ( ( ; 1 2  ∈  ℤ  ∧  𝑁  ∈  ℤ  ∧  ; 1 2  ≤  𝑁 )  →  ( ( 7  +  3 )  <  𝑁  ↔  7  <  ( 𝑁  −  3 ) ) ) | 
						
							| 36 | 31 35 | mpbid | ⊢ ( ( ; 1 2  ∈  ℤ  ∧  𝑁  ∈  ℤ  ∧  ; 1 2  ≤  𝑁 )  →  7  <  ( 𝑁  −  3 ) ) | 
						
							| 37 | 12 36 | sylbi | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ ; 1 2 )  →  7  <  ( 𝑁  −  3 ) ) | 
						
							| 38 | 37 | adantr | ⊢ ( ( 𝑁  ∈  ( ℤ≥ ‘ ; 1 2 )  ∧  𝑁  ∈   Even  )  →  7  <  ( 𝑁  −  3 ) ) | 
						
							| 39 |  | simpr | ⊢ ( ( ( 𝑁  ∈  ( ℤ≥ ‘ ; 1 2 )  ∧  𝑁  ∈   Even  )  ∧  ( 𝑁  −  3 )  ∈   GoldbachOdd  )  →  ( 𝑁  −  3 )  ∈   GoldbachOdd  ) | 
						
							| 40 |  | oveq1 | ⊢ ( 𝑜  =  ( 𝑁  −  3 )  →  ( 𝑜  +  3 )  =  ( ( 𝑁  −  3 )  +  3 ) ) | 
						
							| 41 | 40 | eqeq2d | ⊢ ( 𝑜  =  ( 𝑁  −  3 )  →  ( 𝑁  =  ( 𝑜  +  3 )  ↔  𝑁  =  ( ( 𝑁  −  3 )  +  3 ) ) ) | 
						
							| 42 | 41 | adantl | ⊢ ( ( ( ( 𝑁  ∈  ( ℤ≥ ‘ ; 1 2 )  ∧  𝑁  ∈   Even  )  ∧  ( 𝑁  −  3 )  ∈   GoldbachOdd  )  ∧  𝑜  =  ( 𝑁  −  3 ) )  →  ( 𝑁  =  ( 𝑜  +  3 )  ↔  𝑁  =  ( ( 𝑁  −  3 )  +  3 ) ) ) | 
						
							| 43 |  | eluzelcn | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ ; 1 2 )  →  𝑁  ∈  ℂ ) | 
						
							| 44 |  | 3cn | ⊢ 3  ∈  ℂ | 
						
							| 45 | 43 44 | jctir | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ ; 1 2 )  →  ( 𝑁  ∈  ℂ  ∧  3  ∈  ℂ ) ) | 
						
							| 46 | 45 | adantr | ⊢ ( ( 𝑁  ∈  ( ℤ≥ ‘ ; 1 2 )  ∧  𝑁  ∈   Even  )  →  ( 𝑁  ∈  ℂ  ∧  3  ∈  ℂ ) ) | 
						
							| 47 | 46 | adantr | ⊢ ( ( ( 𝑁  ∈  ( ℤ≥ ‘ ; 1 2 )  ∧  𝑁  ∈   Even  )  ∧  ( 𝑁  −  3 )  ∈   GoldbachOdd  )  →  ( 𝑁  ∈  ℂ  ∧  3  ∈  ℂ ) ) | 
						
							| 48 |  | npcan | ⊢ ( ( 𝑁  ∈  ℂ  ∧  3  ∈  ℂ )  →  ( ( 𝑁  −  3 )  +  3 )  =  𝑁 ) | 
						
							| 49 | 48 | eqcomd | ⊢ ( ( 𝑁  ∈  ℂ  ∧  3  ∈  ℂ )  →  𝑁  =  ( ( 𝑁  −  3 )  +  3 ) ) | 
						
							| 50 | 47 49 | syl | ⊢ ( ( ( 𝑁  ∈  ( ℤ≥ ‘ ; 1 2 )  ∧  𝑁  ∈   Even  )  ∧  ( 𝑁  −  3 )  ∈   GoldbachOdd  )  →  𝑁  =  ( ( 𝑁  −  3 )  +  3 ) ) | 
						
							| 51 | 39 42 50 | rspcedvd | ⊢ ( ( ( 𝑁  ∈  ( ℤ≥ ‘ ; 1 2 )  ∧  𝑁  ∈   Even  )  ∧  ( 𝑁  −  3 )  ∈   GoldbachOdd  )  →  ∃ 𝑜  ∈   GoldbachOdd  𝑁  =  ( 𝑜  +  3 ) ) | 
						
							| 52 | 51 | ex | ⊢ ( ( 𝑁  ∈  ( ℤ≥ ‘ ; 1 2 )  ∧  𝑁  ∈   Even  )  →  ( ( 𝑁  −  3 )  ∈   GoldbachOdd   →  ∃ 𝑜  ∈   GoldbachOdd  𝑁  =  ( 𝑜  +  3 ) ) ) | 
						
							| 53 | 38 52 | embantd | ⊢ ( ( 𝑁  ∈  ( ℤ≥ ‘ ; 1 2 )  ∧  𝑁  ∈   Even  )  →  ( ( 7  <  ( 𝑁  −  3 )  →  ( 𝑁  −  3 )  ∈   GoldbachOdd  )  →  ∃ 𝑜  ∈   GoldbachOdd  𝑁  =  ( 𝑜  +  3 ) ) ) | 
						
							| 54 | 11 53 | syldc | ⊢ ( ∀ 𝑚  ∈   Odd  ( 7  <  𝑚  →  𝑚  ∈   GoldbachOdd  )  →  ( ( 𝑁  ∈  ( ℤ≥ ‘ ; 1 2 )  ∧  𝑁  ∈   Even  )  →  ∃ 𝑜  ∈   GoldbachOdd  𝑁  =  ( 𝑜  +  3 ) ) ) |