Step |
Hyp |
Ref |
Expression |
1 |
|
sticksstones16.1 |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
2 |
|
sticksstones16.2 |
⊢ ( 𝜑 → 𝐾 ∈ ℕ ) |
3 |
|
sticksstones16.3 |
⊢ 𝐴 = { 𝑔 ∣ ( 𝑔 : ( 1 ... 𝐾 ) ⟶ ℕ0 ∧ Σ 𝑖 ∈ ( 1 ... 𝐾 ) ( 𝑔 ‘ 𝑖 ) = 𝑁 ) } |
4 |
|
fveq2 |
⊢ ( 𝑖 = 𝑗 → ( 𝑔 ‘ 𝑖 ) = ( 𝑔 ‘ 𝑗 ) ) |
5 |
4
|
cbvsumv |
⊢ Σ 𝑖 ∈ ( 1 ... 𝐾 ) ( 𝑔 ‘ 𝑖 ) = Σ 𝑗 ∈ ( 1 ... 𝐾 ) ( 𝑔 ‘ 𝑗 ) |
6 |
5
|
eqeq1i |
⊢ ( Σ 𝑖 ∈ ( 1 ... 𝐾 ) ( 𝑔 ‘ 𝑖 ) = 𝑁 ↔ Σ 𝑗 ∈ ( 1 ... 𝐾 ) ( 𝑔 ‘ 𝑗 ) = 𝑁 ) |
7 |
6
|
anbi2i |
⊢ ( ( 𝑔 : ( 1 ... 𝐾 ) ⟶ ℕ0 ∧ Σ 𝑖 ∈ ( 1 ... 𝐾 ) ( 𝑔 ‘ 𝑖 ) = 𝑁 ) ↔ ( 𝑔 : ( 1 ... 𝐾 ) ⟶ ℕ0 ∧ Σ 𝑗 ∈ ( 1 ... 𝐾 ) ( 𝑔 ‘ 𝑗 ) = 𝑁 ) ) |
8 |
7
|
abbii |
⊢ { 𝑔 ∣ ( 𝑔 : ( 1 ... 𝐾 ) ⟶ ℕ0 ∧ Σ 𝑖 ∈ ( 1 ... 𝐾 ) ( 𝑔 ‘ 𝑖 ) = 𝑁 ) } = { 𝑔 ∣ ( 𝑔 : ( 1 ... 𝐾 ) ⟶ ℕ0 ∧ Σ 𝑗 ∈ ( 1 ... 𝐾 ) ( 𝑔 ‘ 𝑗 ) = 𝑁 ) } |
9 |
3 8
|
eqtri |
⊢ 𝐴 = { 𝑔 ∣ ( 𝑔 : ( 1 ... 𝐾 ) ⟶ ℕ0 ∧ Σ 𝑗 ∈ ( 1 ... 𝐾 ) ( 𝑔 ‘ 𝑗 ) = 𝑁 ) } |
10 |
9
|
a1i |
⊢ ( 𝜑 → 𝐴 = { 𝑔 ∣ ( 𝑔 : ( 1 ... 𝐾 ) ⟶ ℕ0 ∧ Σ 𝑗 ∈ ( 1 ... 𝐾 ) ( 𝑔 ‘ 𝑗 ) = 𝑁 ) } ) |
11 |
|
nfv |
⊢ Ⅎ 𝑔 𝜑 |
12 |
2
|
nncnd |
⊢ ( 𝜑 → 𝐾 ∈ ℂ ) |
13 |
|
1cnd |
⊢ ( 𝜑 → 1 ∈ ℂ ) |
14 |
12 13
|
npcand |
⊢ ( 𝜑 → ( ( 𝐾 − 1 ) + 1 ) = 𝐾 ) |
15 |
14
|
eqcomd |
⊢ ( 𝜑 → 𝐾 = ( ( 𝐾 − 1 ) + 1 ) ) |
16 |
15
|
oveq2d |
⊢ ( 𝜑 → ( 1 ... 𝐾 ) = ( 1 ... ( ( 𝐾 − 1 ) + 1 ) ) ) |
17 |
16
|
feq2d |
⊢ ( 𝜑 → ( 𝑔 : ( 1 ... 𝐾 ) ⟶ ℕ0 ↔ 𝑔 : ( 1 ... ( ( 𝐾 − 1 ) + 1 ) ) ⟶ ℕ0 ) ) |
18 |
16
|
sumeq1d |
⊢ ( 𝜑 → Σ 𝑗 ∈ ( 1 ... 𝐾 ) ( 𝑔 ‘ 𝑗 ) = Σ 𝑗 ∈ ( 1 ... ( ( 𝐾 − 1 ) + 1 ) ) ( 𝑔 ‘ 𝑗 ) ) |
19 |
18
|
eqeq1d |
⊢ ( 𝜑 → ( Σ 𝑗 ∈ ( 1 ... 𝐾 ) ( 𝑔 ‘ 𝑗 ) = 𝑁 ↔ Σ 𝑗 ∈ ( 1 ... ( ( 𝐾 − 1 ) + 1 ) ) ( 𝑔 ‘ 𝑗 ) = 𝑁 ) ) |
20 |
17 19
|
anbi12d |
⊢ ( 𝜑 → ( ( 𝑔 : ( 1 ... 𝐾 ) ⟶ ℕ0 ∧ Σ 𝑗 ∈ ( 1 ... 𝐾 ) ( 𝑔 ‘ 𝑗 ) = 𝑁 ) ↔ ( 𝑔 : ( 1 ... ( ( 𝐾 − 1 ) + 1 ) ) ⟶ ℕ0 ∧ Σ 𝑗 ∈ ( 1 ... ( ( 𝐾 − 1 ) + 1 ) ) ( 𝑔 ‘ 𝑗 ) = 𝑁 ) ) ) |
21 |
11 20
|
abbid |
⊢ ( 𝜑 → { 𝑔 ∣ ( 𝑔 : ( 1 ... 𝐾 ) ⟶ ℕ0 ∧ Σ 𝑗 ∈ ( 1 ... 𝐾 ) ( 𝑔 ‘ 𝑗 ) = 𝑁 ) } = { 𝑔 ∣ ( 𝑔 : ( 1 ... ( ( 𝐾 − 1 ) + 1 ) ) ⟶ ℕ0 ∧ Σ 𝑗 ∈ ( 1 ... ( ( 𝐾 − 1 ) + 1 ) ) ( 𝑔 ‘ 𝑗 ) = 𝑁 ) } ) |
22 |
10 21
|
eqtrd |
⊢ ( 𝜑 → 𝐴 = { 𝑔 ∣ ( 𝑔 : ( 1 ... ( ( 𝐾 − 1 ) + 1 ) ) ⟶ ℕ0 ∧ Σ 𝑗 ∈ ( 1 ... ( ( 𝐾 − 1 ) + 1 ) ) ( 𝑔 ‘ 𝑗 ) = 𝑁 ) } ) |
23 |
22
|
fveq2d |
⊢ ( 𝜑 → ( ♯ ‘ 𝐴 ) = ( ♯ ‘ { 𝑔 ∣ ( 𝑔 : ( 1 ... ( ( 𝐾 − 1 ) + 1 ) ) ⟶ ℕ0 ∧ Σ 𝑗 ∈ ( 1 ... ( ( 𝐾 − 1 ) + 1 ) ) ( 𝑔 ‘ 𝑗 ) = 𝑁 ) } ) ) |
24 |
|
nnm1nn0 |
⊢ ( 𝐾 ∈ ℕ → ( 𝐾 − 1 ) ∈ ℕ0 ) |
25 |
2 24
|
syl |
⊢ ( 𝜑 → ( 𝐾 − 1 ) ∈ ℕ0 ) |
26 |
|
fveq2 |
⊢ ( 𝑗 = 𝑖 → ( 𝑔 ‘ 𝑗 ) = ( 𝑔 ‘ 𝑖 ) ) |
27 |
26
|
cbvsumv |
⊢ Σ 𝑗 ∈ ( 1 ... ( ( 𝐾 − 1 ) + 1 ) ) ( 𝑔 ‘ 𝑗 ) = Σ 𝑖 ∈ ( 1 ... ( ( 𝐾 − 1 ) + 1 ) ) ( 𝑔 ‘ 𝑖 ) |
28 |
27
|
eqeq1i |
⊢ ( Σ 𝑗 ∈ ( 1 ... ( ( 𝐾 − 1 ) + 1 ) ) ( 𝑔 ‘ 𝑗 ) = 𝑁 ↔ Σ 𝑖 ∈ ( 1 ... ( ( 𝐾 − 1 ) + 1 ) ) ( 𝑔 ‘ 𝑖 ) = 𝑁 ) |
29 |
28
|
anbi2i |
⊢ ( ( 𝑔 : ( 1 ... ( ( 𝐾 − 1 ) + 1 ) ) ⟶ ℕ0 ∧ Σ 𝑗 ∈ ( 1 ... ( ( 𝐾 − 1 ) + 1 ) ) ( 𝑔 ‘ 𝑗 ) = 𝑁 ) ↔ ( 𝑔 : ( 1 ... ( ( 𝐾 − 1 ) + 1 ) ) ⟶ ℕ0 ∧ Σ 𝑖 ∈ ( 1 ... ( ( 𝐾 − 1 ) + 1 ) ) ( 𝑔 ‘ 𝑖 ) = 𝑁 ) ) |
30 |
29
|
abbii |
⊢ { 𝑔 ∣ ( 𝑔 : ( 1 ... ( ( 𝐾 − 1 ) + 1 ) ) ⟶ ℕ0 ∧ Σ 𝑗 ∈ ( 1 ... ( ( 𝐾 − 1 ) + 1 ) ) ( 𝑔 ‘ 𝑗 ) = 𝑁 ) } = { 𝑔 ∣ ( 𝑔 : ( 1 ... ( ( 𝐾 − 1 ) + 1 ) ) ⟶ ℕ0 ∧ Σ 𝑖 ∈ ( 1 ... ( ( 𝐾 − 1 ) + 1 ) ) ( 𝑔 ‘ 𝑖 ) = 𝑁 ) } |
31 |
1 25 30
|
sticksstones15 |
⊢ ( 𝜑 → ( ♯ ‘ { 𝑔 ∣ ( 𝑔 : ( 1 ... ( ( 𝐾 − 1 ) + 1 ) ) ⟶ ℕ0 ∧ Σ 𝑗 ∈ ( 1 ... ( ( 𝐾 − 1 ) + 1 ) ) ( 𝑔 ‘ 𝑗 ) = 𝑁 ) } ) = ( ( 𝑁 + ( 𝐾 − 1 ) ) C ( 𝐾 − 1 ) ) ) |
32 |
23 31
|
eqtrd |
⊢ ( 𝜑 → ( ♯ ‘ 𝐴 ) = ( ( 𝑁 + ( 𝐾 − 1 ) ) C ( 𝐾 − 1 ) ) ) |