Step |
Hyp |
Ref |
Expression |
1 |
|
sticksstones16.1 |
|- ( ph -> N e. NN0 ) |
2 |
|
sticksstones16.2 |
|- ( ph -> K e. NN ) |
3 |
|
sticksstones16.3 |
|- A = { g | ( g : ( 1 ... K ) --> NN0 /\ sum_ i e. ( 1 ... K ) ( g ` i ) = N ) } |
4 |
|
fveq2 |
|- ( i = j -> ( g ` i ) = ( g ` j ) ) |
5 |
4
|
cbvsumv |
|- sum_ i e. ( 1 ... K ) ( g ` i ) = sum_ j e. ( 1 ... K ) ( g ` j ) |
6 |
5
|
eqeq1i |
|- ( sum_ i e. ( 1 ... K ) ( g ` i ) = N <-> sum_ j e. ( 1 ... K ) ( g ` j ) = N ) |
7 |
6
|
anbi2i |
|- ( ( g : ( 1 ... K ) --> NN0 /\ sum_ i e. ( 1 ... K ) ( g ` i ) = N ) <-> ( g : ( 1 ... K ) --> NN0 /\ sum_ j e. ( 1 ... K ) ( g ` j ) = N ) ) |
8 |
7
|
abbii |
|- { g | ( g : ( 1 ... K ) --> NN0 /\ sum_ i e. ( 1 ... K ) ( g ` i ) = N ) } = { g | ( g : ( 1 ... K ) --> NN0 /\ sum_ j e. ( 1 ... K ) ( g ` j ) = N ) } |
9 |
3 8
|
eqtri |
|- A = { g | ( g : ( 1 ... K ) --> NN0 /\ sum_ j e. ( 1 ... K ) ( g ` j ) = N ) } |
10 |
9
|
a1i |
|- ( ph -> A = { g | ( g : ( 1 ... K ) --> NN0 /\ sum_ j e. ( 1 ... K ) ( g ` j ) = N ) } ) |
11 |
|
nfv |
|- F/ g ph |
12 |
2
|
nncnd |
|- ( ph -> K e. CC ) |
13 |
|
1cnd |
|- ( ph -> 1 e. CC ) |
14 |
12 13
|
npcand |
|- ( ph -> ( ( K - 1 ) + 1 ) = K ) |
15 |
14
|
eqcomd |
|- ( ph -> K = ( ( K - 1 ) + 1 ) ) |
16 |
15
|
oveq2d |
|- ( ph -> ( 1 ... K ) = ( 1 ... ( ( K - 1 ) + 1 ) ) ) |
17 |
16
|
feq2d |
|- ( ph -> ( g : ( 1 ... K ) --> NN0 <-> g : ( 1 ... ( ( K - 1 ) + 1 ) ) --> NN0 ) ) |
18 |
16
|
sumeq1d |
|- ( ph -> sum_ j e. ( 1 ... K ) ( g ` j ) = sum_ j e. ( 1 ... ( ( K - 1 ) + 1 ) ) ( g ` j ) ) |
19 |
18
|
eqeq1d |
|- ( ph -> ( sum_ j e. ( 1 ... K ) ( g ` j ) = N <-> sum_ j e. ( 1 ... ( ( K - 1 ) + 1 ) ) ( g ` j ) = N ) ) |
20 |
17 19
|
anbi12d |
|- ( ph -> ( ( g : ( 1 ... K ) --> NN0 /\ sum_ j e. ( 1 ... K ) ( g ` j ) = N ) <-> ( g : ( 1 ... ( ( K - 1 ) + 1 ) ) --> NN0 /\ sum_ j e. ( 1 ... ( ( K - 1 ) + 1 ) ) ( g ` j ) = N ) ) ) |
21 |
11 20
|
abbid |
|- ( ph -> { g | ( g : ( 1 ... K ) --> NN0 /\ sum_ j e. ( 1 ... K ) ( g ` j ) = N ) } = { g | ( g : ( 1 ... ( ( K - 1 ) + 1 ) ) --> NN0 /\ sum_ j e. ( 1 ... ( ( K - 1 ) + 1 ) ) ( g ` j ) = N ) } ) |
22 |
10 21
|
eqtrd |
|- ( ph -> A = { g | ( g : ( 1 ... ( ( K - 1 ) + 1 ) ) --> NN0 /\ sum_ j e. ( 1 ... ( ( K - 1 ) + 1 ) ) ( g ` j ) = N ) } ) |
23 |
22
|
fveq2d |
|- ( ph -> ( # ` A ) = ( # ` { g | ( g : ( 1 ... ( ( K - 1 ) + 1 ) ) --> NN0 /\ sum_ j e. ( 1 ... ( ( K - 1 ) + 1 ) ) ( g ` j ) = N ) } ) ) |
24 |
|
nnm1nn0 |
|- ( K e. NN -> ( K - 1 ) e. NN0 ) |
25 |
2 24
|
syl |
|- ( ph -> ( K - 1 ) e. NN0 ) |
26 |
|
fveq2 |
|- ( j = i -> ( g ` j ) = ( g ` i ) ) |
27 |
26
|
cbvsumv |
|- sum_ j e. ( 1 ... ( ( K - 1 ) + 1 ) ) ( g ` j ) = sum_ i e. ( 1 ... ( ( K - 1 ) + 1 ) ) ( g ` i ) |
28 |
27
|
eqeq1i |
|- ( sum_ j e. ( 1 ... ( ( K - 1 ) + 1 ) ) ( g ` j ) = N <-> sum_ i e. ( 1 ... ( ( K - 1 ) + 1 ) ) ( g ` i ) = N ) |
29 |
28
|
anbi2i |
|- ( ( g : ( 1 ... ( ( K - 1 ) + 1 ) ) --> NN0 /\ sum_ j e. ( 1 ... ( ( K - 1 ) + 1 ) ) ( g ` j ) = N ) <-> ( g : ( 1 ... ( ( K - 1 ) + 1 ) ) --> NN0 /\ sum_ i e. ( 1 ... ( ( K - 1 ) + 1 ) ) ( g ` i ) = N ) ) |
30 |
29
|
abbii |
|- { g | ( g : ( 1 ... ( ( K - 1 ) + 1 ) ) --> NN0 /\ sum_ j e. ( 1 ... ( ( K - 1 ) + 1 ) ) ( g ` j ) = N ) } = { g | ( g : ( 1 ... ( ( K - 1 ) + 1 ) ) --> NN0 /\ sum_ i e. ( 1 ... ( ( K - 1 ) + 1 ) ) ( g ` i ) = N ) } |
31 |
1 25 30
|
sticksstones15 |
|- ( ph -> ( # ` { g | ( g : ( 1 ... ( ( K - 1 ) + 1 ) ) --> NN0 /\ sum_ j e. ( 1 ... ( ( K - 1 ) + 1 ) ) ( g ` j ) = N ) } ) = ( ( N + ( K - 1 ) ) _C ( K - 1 ) ) ) |
32 |
23 31
|
eqtrd |
|- ( ph -> ( # ` A ) = ( ( N + ( K - 1 ) ) _C ( K - 1 ) ) ) |