Step |
Hyp |
Ref |
Expression |
1 |
|
sticksstones17.1 |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
2 |
|
sticksstones17.2 |
⊢ ( 𝜑 → 𝐾 ∈ ℕ0 ) |
3 |
|
sticksstones17.3 |
⊢ 𝐴 = { 𝑔 ∣ ( 𝑔 : ( 1 ... 𝐾 ) ⟶ ℕ0 ∧ Σ 𝑖 ∈ ( 1 ... 𝐾 ) ( 𝑔 ‘ 𝑖 ) = 𝑁 ) } |
4 |
|
sticksstones17.4 |
⊢ 𝐵 = { ℎ ∣ ( ℎ : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( ℎ ‘ 𝑖 ) = 𝑁 ) } |
5 |
|
sticksstones17.5 |
⊢ ( 𝜑 → 𝑍 : ( 1 ... 𝐾 ) –1-1-onto→ 𝑆 ) |
6 |
|
sticksstones17.6 |
⊢ 𝐺 = ( 𝑏 ∈ 𝐵 ↦ ( 𝑦 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑏 ‘ ( 𝑍 ‘ 𝑦 ) ) ) ) |
7 |
4
|
eqimssi |
⊢ 𝐵 ⊆ { ℎ ∣ ( ℎ : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( ℎ ‘ 𝑖 ) = 𝑁 ) } |
8 |
7
|
a1i |
⊢ ( 𝜑 → 𝐵 ⊆ { ℎ ∣ ( ℎ : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( ℎ ‘ 𝑖 ) = 𝑁 ) } ) |
9 |
8
|
sseld |
⊢ ( 𝜑 → ( 𝑏 ∈ 𝐵 → 𝑏 ∈ { ℎ ∣ ( ℎ : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( ℎ ‘ 𝑖 ) = 𝑁 ) } ) ) |
10 |
9
|
imp |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → 𝑏 ∈ { ℎ ∣ ( ℎ : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( ℎ ‘ 𝑖 ) = 𝑁 ) } ) |
11 |
|
vex |
⊢ 𝑏 ∈ V |
12 |
|
feq1 |
⊢ ( ℎ = 𝑏 → ( ℎ : 𝑆 ⟶ ℕ0 ↔ 𝑏 : 𝑆 ⟶ ℕ0 ) ) |
13 |
|
simpl |
⊢ ( ( ℎ = 𝑏 ∧ 𝑖 ∈ 𝑆 ) → ℎ = 𝑏 ) |
14 |
13
|
fveq1d |
⊢ ( ( ℎ = 𝑏 ∧ 𝑖 ∈ 𝑆 ) → ( ℎ ‘ 𝑖 ) = ( 𝑏 ‘ 𝑖 ) ) |
15 |
14
|
sumeq2dv |
⊢ ( ℎ = 𝑏 → Σ 𝑖 ∈ 𝑆 ( ℎ ‘ 𝑖 ) = Σ 𝑖 ∈ 𝑆 ( 𝑏 ‘ 𝑖 ) ) |
16 |
15
|
eqeq1d |
⊢ ( ℎ = 𝑏 → ( Σ 𝑖 ∈ 𝑆 ( ℎ ‘ 𝑖 ) = 𝑁 ↔ Σ 𝑖 ∈ 𝑆 ( 𝑏 ‘ 𝑖 ) = 𝑁 ) ) |
17 |
12 16
|
anbi12d |
⊢ ( ℎ = 𝑏 → ( ( ℎ : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( ℎ ‘ 𝑖 ) = 𝑁 ) ↔ ( 𝑏 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑏 ‘ 𝑖 ) = 𝑁 ) ) ) |
18 |
11 17
|
elab |
⊢ ( 𝑏 ∈ { ℎ ∣ ( ℎ : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( ℎ ‘ 𝑖 ) = 𝑁 ) } ↔ ( 𝑏 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑏 ‘ 𝑖 ) = 𝑁 ) ) |
19 |
10 18
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → ( 𝑏 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑏 ‘ 𝑖 ) = 𝑁 ) ) |
20 |
19
|
simpld |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → 𝑏 : 𝑆 ⟶ ℕ0 ) |
21 |
20
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑦 ∈ ( 1 ... 𝐾 ) ) → 𝑏 : 𝑆 ⟶ ℕ0 ) |
22 |
21
|
3impa |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑦 ∈ ( 1 ... 𝐾 ) ) → 𝑏 : 𝑆 ⟶ ℕ0 ) |
23 |
|
f1of |
⊢ ( 𝑍 : ( 1 ... 𝐾 ) –1-1-onto→ 𝑆 → 𝑍 : ( 1 ... 𝐾 ) ⟶ 𝑆 ) |
24 |
5 23
|
syl |
⊢ ( 𝜑 → 𝑍 : ( 1 ... 𝐾 ) ⟶ 𝑆 ) |
25 |
24
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → 𝑍 : ( 1 ... 𝐾 ) ⟶ 𝑆 ) |
26 |
25
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑦 ∈ ( 1 ... 𝐾 ) ) → 𝑍 : ( 1 ... 𝐾 ) ⟶ 𝑆 ) |
27 |
26
|
3impa |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑦 ∈ ( 1 ... 𝐾 ) ) → 𝑍 : ( 1 ... 𝐾 ) ⟶ 𝑆 ) |
28 |
|
simp3 |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑦 ∈ ( 1 ... 𝐾 ) ) → 𝑦 ∈ ( 1 ... 𝐾 ) ) |
29 |
27 28
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑦 ∈ ( 1 ... 𝐾 ) ) → ( 𝑍 ‘ 𝑦 ) ∈ 𝑆 ) |
30 |
22 29
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑦 ∈ ( 1 ... 𝐾 ) ) → ( 𝑏 ‘ ( 𝑍 ‘ 𝑦 ) ) ∈ ℕ0 ) |
31 |
30
|
3expa |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑦 ∈ ( 1 ... 𝐾 ) ) → ( 𝑏 ‘ ( 𝑍 ‘ 𝑦 ) ) ∈ ℕ0 ) |
32 |
31
|
fmpttd |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → ( 𝑦 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑏 ‘ ( 𝑍 ‘ 𝑦 ) ) ) : ( 1 ... 𝐾 ) ⟶ ℕ0 ) |
33 |
|
eqidd |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑖 ∈ ( 1 ... 𝐾 ) ) → ( 𝑦 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑏 ‘ ( 𝑍 ‘ 𝑦 ) ) ) = ( 𝑦 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑏 ‘ ( 𝑍 ‘ 𝑦 ) ) ) ) |
34 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑖 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑦 = 𝑖 ) → 𝑦 = 𝑖 ) |
35 |
34
|
fveq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑖 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑦 = 𝑖 ) → ( 𝑍 ‘ 𝑦 ) = ( 𝑍 ‘ 𝑖 ) ) |
36 |
35
|
fveq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑖 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑦 = 𝑖 ) → ( 𝑏 ‘ ( 𝑍 ‘ 𝑦 ) ) = ( 𝑏 ‘ ( 𝑍 ‘ 𝑖 ) ) ) |
37 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑖 ∈ ( 1 ... 𝐾 ) ) → 𝑖 ∈ ( 1 ... 𝐾 ) ) |
38 |
|
fvexd |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑖 ∈ ( 1 ... 𝐾 ) ) → ( 𝑏 ‘ ( 𝑍 ‘ 𝑖 ) ) ∈ V ) |
39 |
33 36 37 38
|
fvmptd |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑖 ∈ ( 1 ... 𝐾 ) ) → ( ( 𝑦 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑏 ‘ ( 𝑍 ‘ 𝑦 ) ) ) ‘ 𝑖 ) = ( 𝑏 ‘ ( 𝑍 ‘ 𝑖 ) ) ) |
40 |
39
|
sumeq2dv |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → Σ 𝑖 ∈ ( 1 ... 𝐾 ) ( ( 𝑦 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑏 ‘ ( 𝑍 ‘ 𝑦 ) ) ) ‘ 𝑖 ) = Σ 𝑖 ∈ ( 1 ... 𝐾 ) ( 𝑏 ‘ ( 𝑍 ‘ 𝑖 ) ) ) |
41 |
|
fveq2 |
⊢ ( 𝑠 = ( 𝑍 ‘ 𝑖 ) → ( 𝑏 ‘ 𝑠 ) = ( 𝑏 ‘ ( 𝑍 ‘ 𝑖 ) ) ) |
42 |
|
fzfi |
⊢ ( 1 ... 𝐾 ) ∈ Fin |
43 |
42
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → ( 1 ... 𝐾 ) ∈ Fin ) |
44 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → 𝑍 : ( 1 ... 𝐾 ) –1-1-onto→ 𝑆 ) |
45 |
|
eqidd |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑖 ∈ ( 1 ... 𝐾 ) ) → ( 𝑍 ‘ 𝑖 ) = ( 𝑍 ‘ 𝑖 ) ) |
46 |
|
nn0sscn |
⊢ ℕ0 ⊆ ℂ |
47 |
46
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → ℕ0 ⊆ ℂ ) |
48 |
|
fss |
⊢ ( ( 𝑏 : 𝑆 ⟶ ℕ0 ∧ ℕ0 ⊆ ℂ ) → 𝑏 : 𝑆 ⟶ ℂ ) |
49 |
20 47 48
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → 𝑏 : 𝑆 ⟶ ℂ ) |
50 |
49
|
ffvelrnda |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑠 ∈ 𝑆 ) → ( 𝑏 ‘ 𝑠 ) ∈ ℂ ) |
51 |
41 43 44 45 50
|
fsumf1o |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → Σ 𝑠 ∈ 𝑆 ( 𝑏 ‘ 𝑠 ) = Σ 𝑖 ∈ ( 1 ... 𝐾 ) ( 𝑏 ‘ ( 𝑍 ‘ 𝑖 ) ) ) |
52 |
51
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → Σ 𝑖 ∈ ( 1 ... 𝐾 ) ( 𝑏 ‘ ( 𝑍 ‘ 𝑖 ) ) = Σ 𝑠 ∈ 𝑆 ( 𝑏 ‘ 𝑠 ) ) |
53 |
|
fveq2 |
⊢ ( 𝑠 = 𝑖 → ( 𝑏 ‘ 𝑠 ) = ( 𝑏 ‘ 𝑖 ) ) |
54 |
53
|
cbvsumv |
⊢ Σ 𝑠 ∈ 𝑆 ( 𝑏 ‘ 𝑠 ) = Σ 𝑖 ∈ 𝑆 ( 𝑏 ‘ 𝑖 ) |
55 |
54
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → Σ 𝑠 ∈ 𝑆 ( 𝑏 ‘ 𝑠 ) = Σ 𝑖 ∈ 𝑆 ( 𝑏 ‘ 𝑖 ) ) |
56 |
19
|
simprd |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → Σ 𝑖 ∈ 𝑆 ( 𝑏 ‘ 𝑖 ) = 𝑁 ) |
57 |
55 56
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → Σ 𝑠 ∈ 𝑆 ( 𝑏 ‘ 𝑠 ) = 𝑁 ) |
58 |
52 57
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → Σ 𝑖 ∈ ( 1 ... 𝐾 ) ( 𝑏 ‘ ( 𝑍 ‘ 𝑖 ) ) = 𝑁 ) |
59 |
40 58
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → Σ 𝑖 ∈ ( 1 ... 𝐾 ) ( ( 𝑦 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑏 ‘ ( 𝑍 ‘ 𝑦 ) ) ) ‘ 𝑖 ) = 𝑁 ) |
60 |
32 59
|
jca |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → ( ( 𝑦 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑏 ‘ ( 𝑍 ‘ 𝑦 ) ) ) : ( 1 ... 𝐾 ) ⟶ ℕ0 ∧ Σ 𝑖 ∈ ( 1 ... 𝐾 ) ( ( 𝑦 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑏 ‘ ( 𝑍 ‘ 𝑦 ) ) ) ‘ 𝑖 ) = 𝑁 ) ) |
61 |
|
fzfid |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → ( 1 ... 𝐾 ) ∈ Fin ) |
62 |
61
|
mptexd |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → ( 𝑦 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑏 ‘ ( 𝑍 ‘ 𝑦 ) ) ) ∈ V ) |
63 |
|
feq1 |
⊢ ( 𝑔 = ( 𝑦 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑏 ‘ ( 𝑍 ‘ 𝑦 ) ) ) → ( 𝑔 : ( 1 ... 𝐾 ) ⟶ ℕ0 ↔ ( 𝑦 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑏 ‘ ( 𝑍 ‘ 𝑦 ) ) ) : ( 1 ... 𝐾 ) ⟶ ℕ0 ) ) |
64 |
|
simpl |
⊢ ( ( 𝑔 = ( 𝑦 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑏 ‘ ( 𝑍 ‘ 𝑦 ) ) ) ∧ 𝑖 ∈ ( 1 ... 𝐾 ) ) → 𝑔 = ( 𝑦 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑏 ‘ ( 𝑍 ‘ 𝑦 ) ) ) ) |
65 |
64
|
fveq1d |
⊢ ( ( 𝑔 = ( 𝑦 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑏 ‘ ( 𝑍 ‘ 𝑦 ) ) ) ∧ 𝑖 ∈ ( 1 ... 𝐾 ) ) → ( 𝑔 ‘ 𝑖 ) = ( ( 𝑦 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑏 ‘ ( 𝑍 ‘ 𝑦 ) ) ) ‘ 𝑖 ) ) |
66 |
65
|
sumeq2dv |
⊢ ( 𝑔 = ( 𝑦 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑏 ‘ ( 𝑍 ‘ 𝑦 ) ) ) → Σ 𝑖 ∈ ( 1 ... 𝐾 ) ( 𝑔 ‘ 𝑖 ) = Σ 𝑖 ∈ ( 1 ... 𝐾 ) ( ( 𝑦 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑏 ‘ ( 𝑍 ‘ 𝑦 ) ) ) ‘ 𝑖 ) ) |
67 |
66
|
eqeq1d |
⊢ ( 𝑔 = ( 𝑦 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑏 ‘ ( 𝑍 ‘ 𝑦 ) ) ) → ( Σ 𝑖 ∈ ( 1 ... 𝐾 ) ( 𝑔 ‘ 𝑖 ) = 𝑁 ↔ Σ 𝑖 ∈ ( 1 ... 𝐾 ) ( ( 𝑦 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑏 ‘ ( 𝑍 ‘ 𝑦 ) ) ) ‘ 𝑖 ) = 𝑁 ) ) |
68 |
63 67
|
anbi12d |
⊢ ( 𝑔 = ( 𝑦 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑏 ‘ ( 𝑍 ‘ 𝑦 ) ) ) → ( ( 𝑔 : ( 1 ... 𝐾 ) ⟶ ℕ0 ∧ Σ 𝑖 ∈ ( 1 ... 𝐾 ) ( 𝑔 ‘ 𝑖 ) = 𝑁 ) ↔ ( ( 𝑦 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑏 ‘ ( 𝑍 ‘ 𝑦 ) ) ) : ( 1 ... 𝐾 ) ⟶ ℕ0 ∧ Σ 𝑖 ∈ ( 1 ... 𝐾 ) ( ( 𝑦 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑏 ‘ ( 𝑍 ‘ 𝑦 ) ) ) ‘ 𝑖 ) = 𝑁 ) ) ) |
69 |
68
|
elabg |
⊢ ( ( 𝑦 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑏 ‘ ( 𝑍 ‘ 𝑦 ) ) ) ∈ V → ( ( 𝑦 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑏 ‘ ( 𝑍 ‘ 𝑦 ) ) ) ∈ { 𝑔 ∣ ( 𝑔 : ( 1 ... 𝐾 ) ⟶ ℕ0 ∧ Σ 𝑖 ∈ ( 1 ... 𝐾 ) ( 𝑔 ‘ 𝑖 ) = 𝑁 ) } ↔ ( ( 𝑦 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑏 ‘ ( 𝑍 ‘ 𝑦 ) ) ) : ( 1 ... 𝐾 ) ⟶ ℕ0 ∧ Σ 𝑖 ∈ ( 1 ... 𝐾 ) ( ( 𝑦 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑏 ‘ ( 𝑍 ‘ 𝑦 ) ) ) ‘ 𝑖 ) = 𝑁 ) ) ) |
70 |
62 69
|
syl |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → ( ( 𝑦 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑏 ‘ ( 𝑍 ‘ 𝑦 ) ) ) ∈ { 𝑔 ∣ ( 𝑔 : ( 1 ... 𝐾 ) ⟶ ℕ0 ∧ Σ 𝑖 ∈ ( 1 ... 𝐾 ) ( 𝑔 ‘ 𝑖 ) = 𝑁 ) } ↔ ( ( 𝑦 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑏 ‘ ( 𝑍 ‘ 𝑦 ) ) ) : ( 1 ... 𝐾 ) ⟶ ℕ0 ∧ Σ 𝑖 ∈ ( 1 ... 𝐾 ) ( ( 𝑦 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑏 ‘ ( 𝑍 ‘ 𝑦 ) ) ) ‘ 𝑖 ) = 𝑁 ) ) ) |
71 |
60 70
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → ( 𝑦 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑏 ‘ ( 𝑍 ‘ 𝑦 ) ) ) ∈ { 𝑔 ∣ ( 𝑔 : ( 1 ... 𝐾 ) ⟶ ℕ0 ∧ Σ 𝑖 ∈ ( 1 ... 𝐾 ) ( 𝑔 ‘ 𝑖 ) = 𝑁 ) } ) |
72 |
3
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → 𝐴 = { 𝑔 ∣ ( 𝑔 : ( 1 ... 𝐾 ) ⟶ ℕ0 ∧ Σ 𝑖 ∈ ( 1 ... 𝐾 ) ( 𝑔 ‘ 𝑖 ) = 𝑁 ) } ) |
73 |
71 72
|
eleqtrrd |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → ( 𝑦 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑏 ‘ ( 𝑍 ‘ 𝑦 ) ) ) ∈ 𝐴 ) |
74 |
73 6
|
fmptd |
⊢ ( 𝜑 → 𝐺 : 𝐵 ⟶ 𝐴 ) |