Step |
Hyp |
Ref |
Expression |
1 |
|
sticksstones18.1 |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
2 |
|
sticksstones18.2 |
⊢ ( 𝜑 → 𝐾 ∈ ℕ0 ) |
3 |
|
sticksstones18.3 |
⊢ 𝐴 = { 𝑔 ∣ ( 𝑔 : ( 1 ... 𝐾 ) ⟶ ℕ0 ∧ Σ 𝑖 ∈ ( 1 ... 𝐾 ) ( 𝑔 ‘ 𝑖 ) = 𝑁 ) } |
4 |
|
sticksstones18.4 |
⊢ 𝐵 = { ℎ ∣ ( ℎ : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( ℎ ‘ 𝑖 ) = 𝑁 ) } |
5 |
|
sticksstones18.5 |
⊢ ( 𝜑 → 𝑍 : ( 1 ... 𝐾 ) –1-1-onto→ 𝑆 ) |
6 |
|
sticksstones18.6 |
⊢ 𝐹 = ( 𝑎 ∈ 𝐴 ↦ ( 𝑥 ∈ 𝑆 ↦ ( 𝑎 ‘ ( ◡ 𝑍 ‘ 𝑥 ) ) ) ) |
7 |
3
|
eqimssi |
⊢ 𝐴 ⊆ { 𝑔 ∣ ( 𝑔 : ( 1 ... 𝐾 ) ⟶ ℕ0 ∧ Σ 𝑖 ∈ ( 1 ... 𝐾 ) ( 𝑔 ‘ 𝑖 ) = 𝑁 ) } |
8 |
7
|
a1i |
⊢ ( 𝜑 → 𝐴 ⊆ { 𝑔 ∣ ( 𝑔 : ( 1 ... 𝐾 ) ⟶ ℕ0 ∧ Σ 𝑖 ∈ ( 1 ... 𝐾 ) ( 𝑔 ‘ 𝑖 ) = 𝑁 ) } ) |
9 |
8
|
sseld |
⊢ ( 𝜑 → ( 𝑎 ∈ 𝐴 → 𝑎 ∈ { 𝑔 ∣ ( 𝑔 : ( 1 ... 𝐾 ) ⟶ ℕ0 ∧ Σ 𝑖 ∈ ( 1 ... 𝐾 ) ( 𝑔 ‘ 𝑖 ) = 𝑁 ) } ) ) |
10 |
9
|
imp |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) → 𝑎 ∈ { 𝑔 ∣ ( 𝑔 : ( 1 ... 𝐾 ) ⟶ ℕ0 ∧ Σ 𝑖 ∈ ( 1 ... 𝐾 ) ( 𝑔 ‘ 𝑖 ) = 𝑁 ) } ) |
11 |
|
vex |
⊢ 𝑎 ∈ V |
12 |
|
feq1 |
⊢ ( 𝑔 = 𝑎 → ( 𝑔 : ( 1 ... 𝐾 ) ⟶ ℕ0 ↔ 𝑎 : ( 1 ... 𝐾 ) ⟶ ℕ0 ) ) |
13 |
|
simpl |
⊢ ( ( 𝑔 = 𝑎 ∧ 𝑖 ∈ ( 1 ... 𝐾 ) ) → 𝑔 = 𝑎 ) |
14 |
13
|
fveq1d |
⊢ ( ( 𝑔 = 𝑎 ∧ 𝑖 ∈ ( 1 ... 𝐾 ) ) → ( 𝑔 ‘ 𝑖 ) = ( 𝑎 ‘ 𝑖 ) ) |
15 |
14
|
sumeq2dv |
⊢ ( 𝑔 = 𝑎 → Σ 𝑖 ∈ ( 1 ... 𝐾 ) ( 𝑔 ‘ 𝑖 ) = Σ 𝑖 ∈ ( 1 ... 𝐾 ) ( 𝑎 ‘ 𝑖 ) ) |
16 |
15
|
eqeq1d |
⊢ ( 𝑔 = 𝑎 → ( Σ 𝑖 ∈ ( 1 ... 𝐾 ) ( 𝑔 ‘ 𝑖 ) = 𝑁 ↔ Σ 𝑖 ∈ ( 1 ... 𝐾 ) ( 𝑎 ‘ 𝑖 ) = 𝑁 ) ) |
17 |
12 16
|
anbi12d |
⊢ ( 𝑔 = 𝑎 → ( ( 𝑔 : ( 1 ... 𝐾 ) ⟶ ℕ0 ∧ Σ 𝑖 ∈ ( 1 ... 𝐾 ) ( 𝑔 ‘ 𝑖 ) = 𝑁 ) ↔ ( 𝑎 : ( 1 ... 𝐾 ) ⟶ ℕ0 ∧ Σ 𝑖 ∈ ( 1 ... 𝐾 ) ( 𝑎 ‘ 𝑖 ) = 𝑁 ) ) ) |
18 |
11 17
|
elab |
⊢ ( 𝑎 ∈ { 𝑔 ∣ ( 𝑔 : ( 1 ... 𝐾 ) ⟶ ℕ0 ∧ Σ 𝑖 ∈ ( 1 ... 𝐾 ) ( 𝑔 ‘ 𝑖 ) = 𝑁 ) } ↔ ( 𝑎 : ( 1 ... 𝐾 ) ⟶ ℕ0 ∧ Σ 𝑖 ∈ ( 1 ... 𝐾 ) ( 𝑎 ‘ 𝑖 ) = 𝑁 ) ) |
19 |
10 18
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) → ( 𝑎 : ( 1 ... 𝐾 ) ⟶ ℕ0 ∧ Σ 𝑖 ∈ ( 1 ... 𝐾 ) ( 𝑎 ‘ 𝑖 ) = 𝑁 ) ) |
20 |
19
|
simpld |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) → 𝑎 : ( 1 ... 𝐾 ) ⟶ ℕ0 ) |
21 |
20
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑥 ∈ 𝑆 ) → 𝑎 : ( 1 ... 𝐾 ) ⟶ ℕ0 ) |
22 |
|
f1ocnv |
⊢ ( 𝑍 : ( 1 ... 𝐾 ) –1-1-onto→ 𝑆 → ◡ 𝑍 : 𝑆 –1-1-onto→ ( 1 ... 𝐾 ) ) |
23 |
5 22
|
syl |
⊢ ( 𝜑 → ◡ 𝑍 : 𝑆 –1-1-onto→ ( 1 ... 𝐾 ) ) |
24 |
|
f1of |
⊢ ( ◡ 𝑍 : 𝑆 –1-1-onto→ ( 1 ... 𝐾 ) → ◡ 𝑍 : 𝑆 ⟶ ( 1 ... 𝐾 ) ) |
25 |
23 24
|
syl |
⊢ ( 𝜑 → ◡ 𝑍 : 𝑆 ⟶ ( 1 ... 𝐾 ) ) |
26 |
25
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) → ◡ 𝑍 : 𝑆 ⟶ ( 1 ... 𝐾 ) ) |
27 |
26
|
ffvelrnda |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑥 ∈ 𝑆 ) → ( ◡ 𝑍 ‘ 𝑥 ) ∈ ( 1 ... 𝐾 ) ) |
28 |
21 27
|
ffvelrnd |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑥 ∈ 𝑆 ) → ( 𝑎 ‘ ( ◡ 𝑍 ‘ 𝑥 ) ) ∈ ℕ0 ) |
29 |
28
|
fmpttd |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) → ( 𝑥 ∈ 𝑆 ↦ ( 𝑎 ‘ ( ◡ 𝑍 ‘ 𝑥 ) ) ) : 𝑆 ⟶ ℕ0 ) |
30 |
|
eqidd |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑖 ∈ 𝑆 ) → ( 𝑥 ∈ 𝑆 ↦ ( 𝑎 ‘ ( ◡ 𝑍 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ 𝑆 ↦ ( 𝑎 ‘ ( ◡ 𝑍 ‘ 𝑥 ) ) ) ) |
31 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑖 ∈ 𝑆 ) ∧ 𝑥 = 𝑖 ) → 𝑥 = 𝑖 ) |
32 |
31
|
fveq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑖 ∈ 𝑆 ) ∧ 𝑥 = 𝑖 ) → ( ◡ 𝑍 ‘ 𝑥 ) = ( ◡ 𝑍 ‘ 𝑖 ) ) |
33 |
32
|
fveq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑖 ∈ 𝑆 ) ∧ 𝑥 = 𝑖 ) → ( 𝑎 ‘ ( ◡ 𝑍 ‘ 𝑥 ) ) = ( 𝑎 ‘ ( ◡ 𝑍 ‘ 𝑖 ) ) ) |
34 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑖 ∈ 𝑆 ) → 𝑖 ∈ 𝑆 ) |
35 |
|
fvexd |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑖 ∈ 𝑆 ) → ( 𝑎 ‘ ( ◡ 𝑍 ‘ 𝑖 ) ) ∈ V ) |
36 |
30 33 34 35
|
fvmptd |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑖 ∈ 𝑆 ) → ( ( 𝑥 ∈ 𝑆 ↦ ( 𝑎 ‘ ( ◡ 𝑍 ‘ 𝑥 ) ) ) ‘ 𝑖 ) = ( 𝑎 ‘ ( ◡ 𝑍 ‘ 𝑖 ) ) ) |
37 |
36
|
sumeq2dv |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) → Σ 𝑖 ∈ 𝑆 ( ( 𝑥 ∈ 𝑆 ↦ ( 𝑎 ‘ ( ◡ 𝑍 ‘ 𝑥 ) ) ) ‘ 𝑖 ) = Σ 𝑖 ∈ 𝑆 ( 𝑎 ‘ ( ◡ 𝑍 ‘ 𝑖 ) ) ) |
38 |
|
fveq2 |
⊢ ( 𝑛 = ( ◡ 𝑍 ‘ 𝑖 ) → ( 𝑎 ‘ 𝑛 ) = ( 𝑎 ‘ ( ◡ 𝑍 ‘ 𝑖 ) ) ) |
39 |
|
fzfid |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) → ( 1 ... 𝐾 ) ∈ Fin ) |
40 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) → 𝑍 : ( 1 ... 𝐾 ) –1-1-onto→ 𝑆 ) |
41 |
|
f1oenfi |
⊢ ( ( ( 1 ... 𝐾 ) ∈ Fin ∧ 𝑍 : ( 1 ... 𝐾 ) –1-1-onto→ 𝑆 ) → ( 1 ... 𝐾 ) ≈ 𝑆 ) |
42 |
39 40 41
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) → ( 1 ... 𝐾 ) ≈ 𝑆 ) |
43 |
42
|
ensymd |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) → 𝑆 ≈ ( 1 ... 𝐾 ) ) |
44 |
|
enfii |
⊢ ( ( ( 1 ... 𝐾 ) ∈ Fin ∧ 𝑆 ≈ ( 1 ... 𝐾 ) ) → 𝑆 ∈ Fin ) |
45 |
39 43 44
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) → 𝑆 ∈ Fin ) |
46 |
23
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) → ◡ 𝑍 : 𝑆 –1-1-onto→ ( 1 ... 𝐾 ) ) |
47 |
|
eqidd |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑖 ∈ 𝑆 ) → ( ◡ 𝑍 ‘ 𝑖 ) = ( ◡ 𝑍 ‘ 𝑖 ) ) |
48 |
|
nn0sscn |
⊢ ℕ0 ⊆ ℂ |
49 |
48
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) → ℕ0 ⊆ ℂ ) |
50 |
|
fss |
⊢ ( ( 𝑎 : ( 1 ... 𝐾 ) ⟶ ℕ0 ∧ ℕ0 ⊆ ℂ ) → 𝑎 : ( 1 ... 𝐾 ) ⟶ ℂ ) |
51 |
20 49 50
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) → 𝑎 : ( 1 ... 𝐾 ) ⟶ ℂ ) |
52 |
51
|
ffvelrnda |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑛 ∈ ( 1 ... 𝐾 ) ) → ( 𝑎 ‘ 𝑛 ) ∈ ℂ ) |
53 |
38 45 46 47 52
|
fsumf1o |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) → Σ 𝑛 ∈ ( 1 ... 𝐾 ) ( 𝑎 ‘ 𝑛 ) = Σ 𝑖 ∈ 𝑆 ( 𝑎 ‘ ( ◡ 𝑍 ‘ 𝑖 ) ) ) |
54 |
53
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) → Σ 𝑖 ∈ 𝑆 ( 𝑎 ‘ ( ◡ 𝑍 ‘ 𝑖 ) ) = Σ 𝑛 ∈ ( 1 ... 𝐾 ) ( 𝑎 ‘ 𝑛 ) ) |
55 |
|
fveq2 |
⊢ ( 𝑛 = 𝑖 → ( 𝑎 ‘ 𝑛 ) = ( 𝑎 ‘ 𝑖 ) ) |
56 |
55
|
cbvsumv |
⊢ Σ 𝑛 ∈ ( 1 ... 𝐾 ) ( 𝑎 ‘ 𝑛 ) = Σ 𝑖 ∈ ( 1 ... 𝐾 ) ( 𝑎 ‘ 𝑖 ) |
57 |
56
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) → Σ 𝑛 ∈ ( 1 ... 𝐾 ) ( 𝑎 ‘ 𝑛 ) = Σ 𝑖 ∈ ( 1 ... 𝐾 ) ( 𝑎 ‘ 𝑖 ) ) |
58 |
19
|
simprd |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) → Σ 𝑖 ∈ ( 1 ... 𝐾 ) ( 𝑎 ‘ 𝑖 ) = 𝑁 ) |
59 |
57 58
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) → Σ 𝑛 ∈ ( 1 ... 𝐾 ) ( 𝑎 ‘ 𝑛 ) = 𝑁 ) |
60 |
54 59
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) → Σ 𝑖 ∈ 𝑆 ( 𝑎 ‘ ( ◡ 𝑍 ‘ 𝑖 ) ) = 𝑁 ) |
61 |
37 60
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) → Σ 𝑖 ∈ 𝑆 ( ( 𝑥 ∈ 𝑆 ↦ ( 𝑎 ‘ ( ◡ 𝑍 ‘ 𝑥 ) ) ) ‘ 𝑖 ) = 𝑁 ) |
62 |
29 61
|
jca |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) → ( ( 𝑥 ∈ 𝑆 ↦ ( 𝑎 ‘ ( ◡ 𝑍 ‘ 𝑥 ) ) ) : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( ( 𝑥 ∈ 𝑆 ↦ ( 𝑎 ‘ ( ◡ 𝑍 ‘ 𝑥 ) ) ) ‘ 𝑖 ) = 𝑁 ) ) |
63 |
|
fzfid |
⊢ ( 𝜑 → ( 1 ... 𝐾 ) ∈ Fin ) |
64 |
63
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) → ( 1 ... 𝐾 ) ∈ Fin ) |
65 |
63 5 41
|
syl2anc |
⊢ ( 𝜑 → ( 1 ... 𝐾 ) ≈ 𝑆 ) |
66 |
65
|
ensymd |
⊢ ( 𝜑 → 𝑆 ≈ ( 1 ... 𝐾 ) ) |
67 |
66
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) → 𝑆 ≈ ( 1 ... 𝐾 ) ) |
68 |
64 67 44
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) → 𝑆 ∈ Fin ) |
69 |
68
|
mptexd |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) → ( 𝑥 ∈ 𝑆 ↦ ( 𝑎 ‘ ( ◡ 𝑍 ‘ 𝑥 ) ) ) ∈ V ) |
70 |
|
feq1 |
⊢ ( ℎ = ( 𝑥 ∈ 𝑆 ↦ ( 𝑎 ‘ ( ◡ 𝑍 ‘ 𝑥 ) ) ) → ( ℎ : 𝑆 ⟶ ℕ0 ↔ ( 𝑥 ∈ 𝑆 ↦ ( 𝑎 ‘ ( ◡ 𝑍 ‘ 𝑥 ) ) ) : 𝑆 ⟶ ℕ0 ) ) |
71 |
|
simpl |
⊢ ( ( ℎ = ( 𝑥 ∈ 𝑆 ↦ ( 𝑎 ‘ ( ◡ 𝑍 ‘ 𝑥 ) ) ) ∧ 𝑖 ∈ 𝑆 ) → ℎ = ( 𝑥 ∈ 𝑆 ↦ ( 𝑎 ‘ ( ◡ 𝑍 ‘ 𝑥 ) ) ) ) |
72 |
71
|
fveq1d |
⊢ ( ( ℎ = ( 𝑥 ∈ 𝑆 ↦ ( 𝑎 ‘ ( ◡ 𝑍 ‘ 𝑥 ) ) ) ∧ 𝑖 ∈ 𝑆 ) → ( ℎ ‘ 𝑖 ) = ( ( 𝑥 ∈ 𝑆 ↦ ( 𝑎 ‘ ( ◡ 𝑍 ‘ 𝑥 ) ) ) ‘ 𝑖 ) ) |
73 |
72
|
sumeq2dv |
⊢ ( ℎ = ( 𝑥 ∈ 𝑆 ↦ ( 𝑎 ‘ ( ◡ 𝑍 ‘ 𝑥 ) ) ) → Σ 𝑖 ∈ 𝑆 ( ℎ ‘ 𝑖 ) = Σ 𝑖 ∈ 𝑆 ( ( 𝑥 ∈ 𝑆 ↦ ( 𝑎 ‘ ( ◡ 𝑍 ‘ 𝑥 ) ) ) ‘ 𝑖 ) ) |
74 |
73
|
eqeq1d |
⊢ ( ℎ = ( 𝑥 ∈ 𝑆 ↦ ( 𝑎 ‘ ( ◡ 𝑍 ‘ 𝑥 ) ) ) → ( Σ 𝑖 ∈ 𝑆 ( ℎ ‘ 𝑖 ) = 𝑁 ↔ Σ 𝑖 ∈ 𝑆 ( ( 𝑥 ∈ 𝑆 ↦ ( 𝑎 ‘ ( ◡ 𝑍 ‘ 𝑥 ) ) ) ‘ 𝑖 ) = 𝑁 ) ) |
75 |
70 74
|
anbi12d |
⊢ ( ℎ = ( 𝑥 ∈ 𝑆 ↦ ( 𝑎 ‘ ( ◡ 𝑍 ‘ 𝑥 ) ) ) → ( ( ℎ : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( ℎ ‘ 𝑖 ) = 𝑁 ) ↔ ( ( 𝑥 ∈ 𝑆 ↦ ( 𝑎 ‘ ( ◡ 𝑍 ‘ 𝑥 ) ) ) : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( ( 𝑥 ∈ 𝑆 ↦ ( 𝑎 ‘ ( ◡ 𝑍 ‘ 𝑥 ) ) ) ‘ 𝑖 ) = 𝑁 ) ) ) |
76 |
75
|
elabg |
⊢ ( ( 𝑥 ∈ 𝑆 ↦ ( 𝑎 ‘ ( ◡ 𝑍 ‘ 𝑥 ) ) ) ∈ V → ( ( 𝑥 ∈ 𝑆 ↦ ( 𝑎 ‘ ( ◡ 𝑍 ‘ 𝑥 ) ) ) ∈ { ℎ ∣ ( ℎ : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( ℎ ‘ 𝑖 ) = 𝑁 ) } ↔ ( ( 𝑥 ∈ 𝑆 ↦ ( 𝑎 ‘ ( ◡ 𝑍 ‘ 𝑥 ) ) ) : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( ( 𝑥 ∈ 𝑆 ↦ ( 𝑎 ‘ ( ◡ 𝑍 ‘ 𝑥 ) ) ) ‘ 𝑖 ) = 𝑁 ) ) ) |
77 |
69 76
|
syl |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) → ( ( 𝑥 ∈ 𝑆 ↦ ( 𝑎 ‘ ( ◡ 𝑍 ‘ 𝑥 ) ) ) ∈ { ℎ ∣ ( ℎ : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( ℎ ‘ 𝑖 ) = 𝑁 ) } ↔ ( ( 𝑥 ∈ 𝑆 ↦ ( 𝑎 ‘ ( ◡ 𝑍 ‘ 𝑥 ) ) ) : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( ( 𝑥 ∈ 𝑆 ↦ ( 𝑎 ‘ ( ◡ 𝑍 ‘ 𝑥 ) ) ) ‘ 𝑖 ) = 𝑁 ) ) ) |
78 |
62 77
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) → ( 𝑥 ∈ 𝑆 ↦ ( 𝑎 ‘ ( ◡ 𝑍 ‘ 𝑥 ) ) ) ∈ { ℎ ∣ ( ℎ : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( ℎ ‘ 𝑖 ) = 𝑁 ) } ) |
79 |
4
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) → 𝐵 = { ℎ ∣ ( ℎ : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( ℎ ‘ 𝑖 ) = 𝑁 ) } ) |
80 |
78 79
|
eleqtrrd |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) → ( 𝑥 ∈ 𝑆 ↦ ( 𝑎 ‘ ( ◡ 𝑍 ‘ 𝑥 ) ) ) ∈ 𝐵 ) |
81 |
80 6
|
fmptd |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) |