Step |
Hyp |
Ref |
Expression |
1 |
|
sticksstones19.1 |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
2 |
|
sticksstones19.2 |
⊢ ( 𝜑 → 𝐾 ∈ ℕ0 ) |
3 |
|
sticksstones19.3 |
⊢ 𝐴 = { 𝑔 ∣ ( 𝑔 : ( 1 ... 𝐾 ) ⟶ ℕ0 ∧ Σ 𝑖 ∈ ( 1 ... 𝐾 ) ( 𝑔 ‘ 𝑖 ) = 𝑁 ) } |
4 |
|
sticksstones19.4 |
⊢ 𝐵 = { ℎ ∣ ( ℎ : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( ℎ ‘ 𝑖 ) = 𝑁 ) } |
5 |
|
sticksstones19.5 |
⊢ ( 𝜑 → 𝑍 : ( 1 ... 𝐾 ) –1-1-onto→ 𝑆 ) |
6 |
|
sticksstones19.6 |
⊢ 𝐹 = ( 𝑎 ∈ 𝐴 ↦ ( 𝑥 ∈ 𝑆 ↦ ( 𝑎 ‘ ( ◡ 𝑍 ‘ 𝑥 ) ) ) ) |
7 |
|
sticksstones19.7 |
⊢ 𝐺 = ( 𝑏 ∈ 𝐵 ↦ ( 𝑦 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑏 ‘ ( 𝑍 ‘ 𝑦 ) ) ) ) |
8 |
1 2 3 4 5 6
|
sticksstones18 |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) |
9 |
1 2 3 4 5 7
|
sticksstones17 |
⊢ ( 𝜑 → 𝐺 : 𝐵 ⟶ 𝐴 ) |
10 |
7
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → 𝐺 = ( 𝑏 ∈ 𝐵 ↦ ( 𝑦 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑏 ‘ ( 𝑍 ‘ 𝑦 ) ) ) ) ) |
11 |
|
simplr |
⊢ ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑏 = ( 𝐹 ‘ 𝑐 ) ) ∧ 𝑦 ∈ ( 1 ... 𝐾 ) ) → 𝑏 = ( 𝐹 ‘ 𝑐 ) ) |
12 |
11
|
fveq1d |
⊢ ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑏 = ( 𝐹 ‘ 𝑐 ) ) ∧ 𝑦 ∈ ( 1 ... 𝐾 ) ) → ( 𝑏 ‘ ( 𝑍 ‘ 𝑦 ) ) = ( ( 𝐹 ‘ 𝑐 ) ‘ ( 𝑍 ‘ 𝑦 ) ) ) |
13 |
12
|
mpteq2dva |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑏 = ( 𝐹 ‘ 𝑐 ) ) → ( 𝑦 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑏 ‘ ( 𝑍 ‘ 𝑦 ) ) ) = ( 𝑦 ∈ ( 1 ... 𝐾 ) ↦ ( ( 𝐹 ‘ 𝑐 ) ‘ ( 𝑍 ‘ 𝑦 ) ) ) ) |
14 |
8
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑐 ) ∈ 𝐵 ) |
15 |
|
fzfid |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → ( 1 ... 𝐾 ) ∈ Fin ) |
16 |
15
|
mptexd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → ( 𝑦 ∈ ( 1 ... 𝐾 ) ↦ ( ( 𝐹 ‘ 𝑐 ) ‘ ( 𝑍 ‘ 𝑦 ) ) ) ∈ V ) |
17 |
10 13 14 16
|
fvmptd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → ( 𝐺 ‘ ( 𝐹 ‘ 𝑐 ) ) = ( 𝑦 ∈ ( 1 ... 𝐾 ) ↦ ( ( 𝐹 ‘ 𝑐 ) ‘ ( 𝑍 ‘ 𝑦 ) ) ) ) |
18 |
6
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑦 ∈ ( 1 ... 𝐾 ) ) → 𝐹 = ( 𝑎 ∈ 𝐴 ↦ ( 𝑥 ∈ 𝑆 ↦ ( 𝑎 ‘ ( ◡ 𝑍 ‘ 𝑥 ) ) ) ) ) |
19 |
18
|
fveq1d |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑦 ∈ ( 1 ... 𝐾 ) ) → ( 𝐹 ‘ 𝑐 ) = ( ( 𝑎 ∈ 𝐴 ↦ ( 𝑥 ∈ 𝑆 ↦ ( 𝑎 ‘ ( ◡ 𝑍 ‘ 𝑥 ) ) ) ) ‘ 𝑐 ) ) |
20 |
19
|
fveq1d |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑦 ∈ ( 1 ... 𝐾 ) ) → ( ( 𝐹 ‘ 𝑐 ) ‘ ( 𝑍 ‘ 𝑦 ) ) = ( ( ( 𝑎 ∈ 𝐴 ↦ ( 𝑥 ∈ 𝑆 ↦ ( 𝑎 ‘ ( ◡ 𝑍 ‘ 𝑥 ) ) ) ) ‘ 𝑐 ) ‘ ( 𝑍 ‘ 𝑦 ) ) ) |
21 |
20
|
3expa |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑦 ∈ ( 1 ... 𝐾 ) ) → ( ( 𝐹 ‘ 𝑐 ) ‘ ( 𝑍 ‘ 𝑦 ) ) = ( ( ( 𝑎 ∈ 𝐴 ↦ ( 𝑥 ∈ 𝑆 ↦ ( 𝑎 ‘ ( ◡ 𝑍 ‘ 𝑥 ) ) ) ) ‘ 𝑐 ) ‘ ( 𝑍 ‘ 𝑦 ) ) ) |
22 |
21
|
mpteq2dva |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → ( 𝑦 ∈ ( 1 ... 𝐾 ) ↦ ( ( 𝐹 ‘ 𝑐 ) ‘ ( 𝑍 ‘ 𝑦 ) ) ) = ( 𝑦 ∈ ( 1 ... 𝐾 ) ↦ ( ( ( 𝑎 ∈ 𝐴 ↦ ( 𝑥 ∈ 𝑆 ↦ ( 𝑎 ‘ ( ◡ 𝑍 ‘ 𝑥 ) ) ) ) ‘ 𝑐 ) ‘ ( 𝑍 ‘ 𝑦 ) ) ) ) |
23 |
|
eqidd |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑦 ∈ ( 1 ... 𝐾 ) ) → ( 𝑎 ∈ 𝐴 ↦ ( 𝑥 ∈ 𝑆 ↦ ( 𝑎 ‘ ( ◡ 𝑍 ‘ 𝑥 ) ) ) ) = ( 𝑎 ∈ 𝐴 ↦ ( 𝑥 ∈ 𝑆 ↦ ( 𝑎 ‘ ( ◡ 𝑍 ‘ 𝑥 ) ) ) ) ) |
24 |
|
simplr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑦 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑎 = 𝑐 ) ∧ 𝑥 ∈ 𝑆 ) → 𝑎 = 𝑐 ) |
25 |
24
|
fveq1d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑦 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑎 = 𝑐 ) ∧ 𝑥 ∈ 𝑆 ) → ( 𝑎 ‘ ( ◡ 𝑍 ‘ 𝑥 ) ) = ( 𝑐 ‘ ( ◡ 𝑍 ‘ 𝑥 ) ) ) |
26 |
25
|
mpteq2dva |
⊢ ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑦 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑎 = 𝑐 ) → ( 𝑥 ∈ 𝑆 ↦ ( 𝑎 ‘ ( ◡ 𝑍 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ 𝑆 ↦ ( 𝑐 ‘ ( ◡ 𝑍 ‘ 𝑥 ) ) ) ) |
27 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑦 ∈ ( 1 ... 𝐾 ) ) → 𝑐 ∈ 𝐴 ) |
28 |
|
fzfid |
⊢ ( 𝜑 → ( 1 ... 𝐾 ) ∈ Fin ) |
29 |
|
f1oenfi |
⊢ ( ( ( 1 ... 𝐾 ) ∈ Fin ∧ 𝑍 : ( 1 ... 𝐾 ) –1-1-onto→ 𝑆 ) → ( 1 ... 𝐾 ) ≈ 𝑆 ) |
30 |
28 5 29
|
syl2anc |
⊢ ( 𝜑 → ( 1 ... 𝐾 ) ≈ 𝑆 ) |
31 |
30
|
ensymd |
⊢ ( 𝜑 → 𝑆 ≈ ( 1 ... 𝐾 ) ) |
32 |
|
enfii |
⊢ ( ( ( 1 ... 𝐾 ) ∈ Fin ∧ 𝑆 ≈ ( 1 ... 𝐾 ) ) → 𝑆 ∈ Fin ) |
33 |
28 31 32
|
syl2anc |
⊢ ( 𝜑 → 𝑆 ∈ Fin ) |
34 |
33
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → 𝑆 ∈ Fin ) |
35 |
34
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑦 ∈ ( 1 ... 𝐾 ) ) → 𝑆 ∈ Fin ) |
36 |
35
|
mptexd |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑦 ∈ ( 1 ... 𝐾 ) ) → ( 𝑥 ∈ 𝑆 ↦ ( 𝑐 ‘ ( ◡ 𝑍 ‘ 𝑥 ) ) ) ∈ V ) |
37 |
23 26 27 36
|
fvmptd |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑦 ∈ ( 1 ... 𝐾 ) ) → ( ( 𝑎 ∈ 𝐴 ↦ ( 𝑥 ∈ 𝑆 ↦ ( 𝑎 ‘ ( ◡ 𝑍 ‘ 𝑥 ) ) ) ) ‘ 𝑐 ) = ( 𝑥 ∈ 𝑆 ↦ ( 𝑐 ‘ ( ◡ 𝑍 ‘ 𝑥 ) ) ) ) |
38 |
37
|
fveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑦 ∈ ( 1 ... 𝐾 ) ) → ( ( ( 𝑎 ∈ 𝐴 ↦ ( 𝑥 ∈ 𝑆 ↦ ( 𝑎 ‘ ( ◡ 𝑍 ‘ 𝑥 ) ) ) ) ‘ 𝑐 ) ‘ ( 𝑍 ‘ 𝑦 ) ) = ( ( 𝑥 ∈ 𝑆 ↦ ( 𝑐 ‘ ( ◡ 𝑍 ‘ 𝑥 ) ) ) ‘ ( 𝑍 ‘ 𝑦 ) ) ) |
39 |
38
|
mpteq2dva |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → ( 𝑦 ∈ ( 1 ... 𝐾 ) ↦ ( ( ( 𝑎 ∈ 𝐴 ↦ ( 𝑥 ∈ 𝑆 ↦ ( 𝑎 ‘ ( ◡ 𝑍 ‘ 𝑥 ) ) ) ) ‘ 𝑐 ) ‘ ( 𝑍 ‘ 𝑦 ) ) ) = ( 𝑦 ∈ ( 1 ... 𝐾 ) ↦ ( ( 𝑥 ∈ 𝑆 ↦ ( 𝑐 ‘ ( ◡ 𝑍 ‘ 𝑥 ) ) ) ‘ ( 𝑍 ‘ 𝑦 ) ) ) ) |
40 |
|
eqidd |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑦 ∈ ( 1 ... 𝐾 ) ) → ( 𝑥 ∈ 𝑆 ↦ ( 𝑐 ‘ ( ◡ 𝑍 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ 𝑆 ↦ ( 𝑐 ‘ ( ◡ 𝑍 ‘ 𝑥 ) ) ) ) |
41 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑦 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑥 = ( 𝑍 ‘ 𝑦 ) ) → 𝑥 = ( 𝑍 ‘ 𝑦 ) ) |
42 |
41
|
fveq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑦 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑥 = ( 𝑍 ‘ 𝑦 ) ) → ( ◡ 𝑍 ‘ 𝑥 ) = ( ◡ 𝑍 ‘ ( 𝑍 ‘ 𝑦 ) ) ) |
43 |
42
|
fveq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑦 ∈ ( 1 ... 𝐾 ) ) ∧ 𝑥 = ( 𝑍 ‘ 𝑦 ) ) → ( 𝑐 ‘ ( ◡ 𝑍 ‘ 𝑥 ) ) = ( 𝑐 ‘ ( ◡ 𝑍 ‘ ( 𝑍 ‘ 𝑦 ) ) ) ) |
44 |
|
f1of |
⊢ ( 𝑍 : ( 1 ... 𝐾 ) –1-1-onto→ 𝑆 → 𝑍 : ( 1 ... 𝐾 ) ⟶ 𝑆 ) |
45 |
5 44
|
syl |
⊢ ( 𝜑 → 𝑍 : ( 1 ... 𝐾 ) ⟶ 𝑆 ) |
46 |
45
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → 𝑍 : ( 1 ... 𝐾 ) ⟶ 𝑆 ) |
47 |
46
|
ffvelrnda |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑦 ∈ ( 1 ... 𝐾 ) ) → ( 𝑍 ‘ 𝑦 ) ∈ 𝑆 ) |
48 |
|
fvexd |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑦 ∈ ( 1 ... 𝐾 ) ) → ( 𝑐 ‘ ( ◡ 𝑍 ‘ ( 𝑍 ‘ 𝑦 ) ) ) ∈ V ) |
49 |
40 43 47 48
|
fvmptd |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑦 ∈ ( 1 ... 𝐾 ) ) → ( ( 𝑥 ∈ 𝑆 ↦ ( 𝑐 ‘ ( ◡ 𝑍 ‘ 𝑥 ) ) ) ‘ ( 𝑍 ‘ 𝑦 ) ) = ( 𝑐 ‘ ( ◡ 𝑍 ‘ ( 𝑍 ‘ 𝑦 ) ) ) ) |
50 |
49
|
mpteq2dva |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → ( 𝑦 ∈ ( 1 ... 𝐾 ) ↦ ( ( 𝑥 ∈ 𝑆 ↦ ( 𝑐 ‘ ( ◡ 𝑍 ‘ 𝑥 ) ) ) ‘ ( 𝑍 ‘ 𝑦 ) ) ) = ( 𝑦 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑐 ‘ ( ◡ 𝑍 ‘ ( 𝑍 ‘ 𝑦 ) ) ) ) ) |
51 |
5
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑦 ∈ ( 1 ... 𝐾 ) ) → 𝑍 : ( 1 ... 𝐾 ) –1-1-onto→ 𝑆 ) |
52 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑦 ∈ ( 1 ... 𝐾 ) ) → 𝑦 ∈ ( 1 ... 𝐾 ) ) |
53 |
|
f1ocnvfv1 |
⊢ ( ( 𝑍 : ( 1 ... 𝐾 ) –1-1-onto→ 𝑆 ∧ 𝑦 ∈ ( 1 ... 𝐾 ) ) → ( ◡ 𝑍 ‘ ( 𝑍 ‘ 𝑦 ) ) = 𝑦 ) |
54 |
51 52 53
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑦 ∈ ( 1 ... 𝐾 ) ) → ( ◡ 𝑍 ‘ ( 𝑍 ‘ 𝑦 ) ) = 𝑦 ) |
55 |
54
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) ∧ 𝑦 ∈ ( 1 ... 𝐾 ) ) → ( 𝑐 ‘ ( ◡ 𝑍 ‘ ( 𝑍 ‘ 𝑦 ) ) ) = ( 𝑐 ‘ 𝑦 ) ) |
56 |
55
|
mpteq2dva |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → ( 𝑦 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑐 ‘ ( ◡ 𝑍 ‘ ( 𝑍 ‘ 𝑦 ) ) ) ) = ( 𝑦 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑐 ‘ 𝑦 ) ) ) |
57 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → 𝑐 ∈ 𝐴 ) |
58 |
3
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → 𝐴 = { 𝑔 ∣ ( 𝑔 : ( 1 ... 𝐾 ) ⟶ ℕ0 ∧ Σ 𝑖 ∈ ( 1 ... 𝐾 ) ( 𝑔 ‘ 𝑖 ) = 𝑁 ) } ) |
59 |
57 58
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → 𝑐 ∈ { 𝑔 ∣ ( 𝑔 : ( 1 ... 𝐾 ) ⟶ ℕ0 ∧ Σ 𝑖 ∈ ( 1 ... 𝐾 ) ( 𝑔 ‘ 𝑖 ) = 𝑁 ) } ) |
60 |
|
vex |
⊢ 𝑐 ∈ V |
61 |
|
feq1 |
⊢ ( 𝑔 = 𝑐 → ( 𝑔 : ( 1 ... 𝐾 ) ⟶ ℕ0 ↔ 𝑐 : ( 1 ... 𝐾 ) ⟶ ℕ0 ) ) |
62 |
|
simpl |
⊢ ( ( 𝑔 = 𝑐 ∧ 𝑖 ∈ ( 1 ... 𝐾 ) ) → 𝑔 = 𝑐 ) |
63 |
62
|
fveq1d |
⊢ ( ( 𝑔 = 𝑐 ∧ 𝑖 ∈ ( 1 ... 𝐾 ) ) → ( 𝑔 ‘ 𝑖 ) = ( 𝑐 ‘ 𝑖 ) ) |
64 |
63
|
sumeq2dv |
⊢ ( 𝑔 = 𝑐 → Σ 𝑖 ∈ ( 1 ... 𝐾 ) ( 𝑔 ‘ 𝑖 ) = Σ 𝑖 ∈ ( 1 ... 𝐾 ) ( 𝑐 ‘ 𝑖 ) ) |
65 |
64
|
eqeq1d |
⊢ ( 𝑔 = 𝑐 → ( Σ 𝑖 ∈ ( 1 ... 𝐾 ) ( 𝑔 ‘ 𝑖 ) = 𝑁 ↔ Σ 𝑖 ∈ ( 1 ... 𝐾 ) ( 𝑐 ‘ 𝑖 ) = 𝑁 ) ) |
66 |
61 65
|
anbi12d |
⊢ ( 𝑔 = 𝑐 → ( ( 𝑔 : ( 1 ... 𝐾 ) ⟶ ℕ0 ∧ Σ 𝑖 ∈ ( 1 ... 𝐾 ) ( 𝑔 ‘ 𝑖 ) = 𝑁 ) ↔ ( 𝑐 : ( 1 ... 𝐾 ) ⟶ ℕ0 ∧ Σ 𝑖 ∈ ( 1 ... 𝐾 ) ( 𝑐 ‘ 𝑖 ) = 𝑁 ) ) ) |
67 |
60 66
|
elab |
⊢ ( 𝑐 ∈ { 𝑔 ∣ ( 𝑔 : ( 1 ... 𝐾 ) ⟶ ℕ0 ∧ Σ 𝑖 ∈ ( 1 ... 𝐾 ) ( 𝑔 ‘ 𝑖 ) = 𝑁 ) } ↔ ( 𝑐 : ( 1 ... 𝐾 ) ⟶ ℕ0 ∧ Σ 𝑖 ∈ ( 1 ... 𝐾 ) ( 𝑐 ‘ 𝑖 ) = 𝑁 ) ) |
68 |
59 67
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → ( 𝑐 : ( 1 ... 𝐾 ) ⟶ ℕ0 ∧ Σ 𝑖 ∈ ( 1 ... 𝐾 ) ( 𝑐 ‘ 𝑖 ) = 𝑁 ) ) |
69 |
68
|
simpld |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → 𝑐 : ( 1 ... 𝐾 ) ⟶ ℕ0 ) |
70 |
|
ffn |
⊢ ( 𝑐 : ( 1 ... 𝐾 ) ⟶ ℕ0 → 𝑐 Fn ( 1 ... 𝐾 ) ) |
71 |
69 70
|
syl |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → 𝑐 Fn ( 1 ... 𝐾 ) ) |
72 |
|
dffn5 |
⊢ ( 𝑐 Fn ( 1 ... 𝐾 ) ↔ 𝑐 = ( 𝑦 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑐 ‘ 𝑦 ) ) ) |
73 |
71 72
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → 𝑐 = ( 𝑦 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑐 ‘ 𝑦 ) ) ) |
74 |
73
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → ( 𝑦 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑐 ‘ 𝑦 ) ) = 𝑐 ) |
75 |
56 74
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → ( 𝑦 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑐 ‘ ( ◡ 𝑍 ‘ ( 𝑍 ‘ 𝑦 ) ) ) ) = 𝑐 ) |
76 |
50 75
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → ( 𝑦 ∈ ( 1 ... 𝐾 ) ↦ ( ( 𝑥 ∈ 𝑆 ↦ ( 𝑐 ‘ ( ◡ 𝑍 ‘ 𝑥 ) ) ) ‘ ( 𝑍 ‘ 𝑦 ) ) ) = 𝑐 ) |
77 |
39 76
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → ( 𝑦 ∈ ( 1 ... 𝐾 ) ↦ ( ( ( 𝑎 ∈ 𝐴 ↦ ( 𝑥 ∈ 𝑆 ↦ ( 𝑎 ‘ ( ◡ 𝑍 ‘ 𝑥 ) ) ) ) ‘ 𝑐 ) ‘ ( 𝑍 ‘ 𝑦 ) ) ) = 𝑐 ) |
78 |
22 77
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → ( 𝑦 ∈ ( 1 ... 𝐾 ) ↦ ( ( 𝐹 ‘ 𝑐 ) ‘ ( 𝑍 ‘ 𝑦 ) ) ) = 𝑐 ) |
79 |
17 78
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐴 ) → ( 𝐺 ‘ ( 𝐹 ‘ 𝑐 ) ) = 𝑐 ) |
80 |
79
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑐 ∈ 𝐴 ( 𝐺 ‘ ( 𝐹 ‘ 𝑐 ) ) = 𝑐 ) |
81 |
6
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → 𝐹 = ( 𝑎 ∈ 𝐴 ↦ ( 𝑥 ∈ 𝑆 ↦ ( 𝑎 ‘ ( ◡ 𝑍 ‘ 𝑥 ) ) ) ) ) |
82 |
|
simplr |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 𝑎 = ( 𝐺 ‘ 𝑑 ) ) ∧ 𝑥 ∈ 𝑆 ) → 𝑎 = ( 𝐺 ‘ 𝑑 ) ) |
83 |
82
|
fveq1d |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 𝑎 = ( 𝐺 ‘ 𝑑 ) ) ∧ 𝑥 ∈ 𝑆 ) → ( 𝑎 ‘ ( ◡ 𝑍 ‘ 𝑥 ) ) = ( ( 𝐺 ‘ 𝑑 ) ‘ ( ◡ 𝑍 ‘ 𝑥 ) ) ) |
84 |
83
|
mpteq2dva |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 𝑎 = ( 𝐺 ‘ 𝑑 ) ) → ( 𝑥 ∈ 𝑆 ↦ ( 𝑎 ‘ ( ◡ 𝑍 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ 𝑆 ↦ ( ( 𝐺 ‘ 𝑑 ) ‘ ( ◡ 𝑍 ‘ 𝑥 ) ) ) ) |
85 |
9
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → ( 𝐺 ‘ 𝑑 ) ∈ 𝐴 ) |
86 |
33
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → 𝑆 ∈ Fin ) |
87 |
86
|
mptexd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → ( 𝑥 ∈ 𝑆 ↦ ( ( 𝐺 ‘ 𝑑 ) ‘ ( ◡ 𝑍 ‘ 𝑥 ) ) ) ∈ V ) |
88 |
81 84 85 87
|
fvmptd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → ( 𝐹 ‘ ( 𝐺 ‘ 𝑑 ) ) = ( 𝑥 ∈ 𝑆 ↦ ( ( 𝐺 ‘ 𝑑 ) ‘ ( ◡ 𝑍 ‘ 𝑥 ) ) ) ) |
89 |
7
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝑆 ) → 𝐺 = ( 𝑏 ∈ 𝐵 ↦ ( 𝑦 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑏 ‘ ( 𝑍 ‘ 𝑦 ) ) ) ) ) |
90 |
|
simplr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝑆 ) ∧ 𝑏 = 𝑑 ) ∧ 𝑦 ∈ ( 1 ... 𝐾 ) ) → 𝑏 = 𝑑 ) |
91 |
90
|
fveq1d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝑆 ) ∧ 𝑏 = 𝑑 ) ∧ 𝑦 ∈ ( 1 ... 𝐾 ) ) → ( 𝑏 ‘ ( 𝑍 ‘ 𝑦 ) ) = ( 𝑑 ‘ ( 𝑍 ‘ 𝑦 ) ) ) |
92 |
91
|
mpteq2dva |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝑆 ) ∧ 𝑏 = 𝑑 ) → ( 𝑦 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑏 ‘ ( 𝑍 ‘ 𝑦 ) ) ) = ( 𝑦 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑑 ‘ ( 𝑍 ‘ 𝑦 ) ) ) ) |
93 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝑆 ) → 𝑑 ∈ 𝐵 ) |
94 |
|
fzfid |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝑆 ) → ( 1 ... 𝐾 ) ∈ Fin ) |
95 |
94
|
mptexd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝑆 ) → ( 𝑦 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑑 ‘ ( 𝑍 ‘ 𝑦 ) ) ) ∈ V ) |
96 |
89 92 93 95
|
fvmptd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝑆 ) → ( 𝐺 ‘ 𝑑 ) = ( 𝑦 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑑 ‘ ( 𝑍 ‘ 𝑦 ) ) ) ) |
97 |
96
|
fveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝑆 ) → ( ( 𝐺 ‘ 𝑑 ) ‘ ( ◡ 𝑍 ‘ 𝑥 ) ) = ( ( 𝑦 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑑 ‘ ( 𝑍 ‘ 𝑦 ) ) ) ‘ ( ◡ 𝑍 ‘ 𝑥 ) ) ) |
98 |
97
|
mpteq2dva |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → ( 𝑥 ∈ 𝑆 ↦ ( ( 𝐺 ‘ 𝑑 ) ‘ ( ◡ 𝑍 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ 𝑆 ↦ ( ( 𝑦 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑑 ‘ ( 𝑍 ‘ 𝑦 ) ) ) ‘ ( ◡ 𝑍 ‘ 𝑥 ) ) ) ) |
99 |
|
eqidd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝑆 ) → ( 𝑦 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑑 ‘ ( 𝑍 ‘ 𝑦 ) ) ) = ( 𝑦 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑑 ‘ ( 𝑍 ‘ 𝑦 ) ) ) ) |
100 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝑆 ) ∧ 𝑦 = ( ◡ 𝑍 ‘ 𝑥 ) ) → 𝑦 = ( ◡ 𝑍 ‘ 𝑥 ) ) |
101 |
100
|
fveq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝑆 ) ∧ 𝑦 = ( ◡ 𝑍 ‘ 𝑥 ) ) → ( 𝑍 ‘ 𝑦 ) = ( 𝑍 ‘ ( ◡ 𝑍 ‘ 𝑥 ) ) ) |
102 |
101
|
fveq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝑆 ) ∧ 𝑦 = ( ◡ 𝑍 ‘ 𝑥 ) ) → ( 𝑑 ‘ ( 𝑍 ‘ 𝑦 ) ) = ( 𝑑 ‘ ( 𝑍 ‘ ( ◡ 𝑍 ‘ 𝑥 ) ) ) ) |
103 |
|
f1ocnv |
⊢ ( 𝑍 : ( 1 ... 𝐾 ) –1-1-onto→ 𝑆 → ◡ 𝑍 : 𝑆 –1-1-onto→ ( 1 ... 𝐾 ) ) |
104 |
5 103
|
syl |
⊢ ( 𝜑 → ◡ 𝑍 : 𝑆 –1-1-onto→ ( 1 ... 𝐾 ) ) |
105 |
|
f1of |
⊢ ( ◡ 𝑍 : 𝑆 –1-1-onto→ ( 1 ... 𝐾 ) → ◡ 𝑍 : 𝑆 ⟶ ( 1 ... 𝐾 ) ) |
106 |
104 105
|
syl |
⊢ ( 𝜑 → ◡ 𝑍 : 𝑆 ⟶ ( 1 ... 𝐾 ) ) |
107 |
106
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → ◡ 𝑍 : 𝑆 ⟶ ( 1 ... 𝐾 ) ) |
108 |
107
|
ffvelrnda |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝑆 ) → ( ◡ 𝑍 ‘ 𝑥 ) ∈ ( 1 ... 𝐾 ) ) |
109 |
|
fvexd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝑆 ) → ( 𝑑 ‘ ( 𝑍 ‘ ( ◡ 𝑍 ‘ 𝑥 ) ) ) ∈ V ) |
110 |
99 102 108 109
|
fvmptd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝑆 ) → ( ( 𝑦 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑑 ‘ ( 𝑍 ‘ 𝑦 ) ) ) ‘ ( ◡ 𝑍 ‘ 𝑥 ) ) = ( 𝑑 ‘ ( 𝑍 ‘ ( ◡ 𝑍 ‘ 𝑥 ) ) ) ) |
111 |
110
|
mpteq2dva |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → ( 𝑥 ∈ 𝑆 ↦ ( ( 𝑦 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑑 ‘ ( 𝑍 ‘ 𝑦 ) ) ) ‘ ( ◡ 𝑍 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ 𝑆 ↦ ( 𝑑 ‘ ( 𝑍 ‘ ( ◡ 𝑍 ‘ 𝑥 ) ) ) ) ) |
112 |
5
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝑆 ) → 𝑍 : ( 1 ... 𝐾 ) –1-1-onto→ 𝑆 ) |
113 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝑆 ) → 𝑥 ∈ 𝑆 ) |
114 |
|
f1ocnvfv2 |
⊢ ( ( 𝑍 : ( 1 ... 𝐾 ) –1-1-onto→ 𝑆 ∧ 𝑥 ∈ 𝑆 ) → ( 𝑍 ‘ ( ◡ 𝑍 ‘ 𝑥 ) ) = 𝑥 ) |
115 |
112 113 114
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝑆 ) → ( 𝑍 ‘ ( ◡ 𝑍 ‘ 𝑥 ) ) = 𝑥 ) |
116 |
115
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝑆 ) → ( 𝑑 ‘ ( 𝑍 ‘ ( ◡ 𝑍 ‘ 𝑥 ) ) ) = ( 𝑑 ‘ 𝑥 ) ) |
117 |
116
|
mpteq2dva |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → ( 𝑥 ∈ 𝑆 ↦ ( 𝑑 ‘ ( 𝑍 ‘ ( ◡ 𝑍 ‘ 𝑥 ) ) ) ) = ( 𝑥 ∈ 𝑆 ↦ ( 𝑑 ‘ 𝑥 ) ) ) |
118 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → 𝑑 ∈ 𝐵 ) |
119 |
4
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → 𝐵 = { ℎ ∣ ( ℎ : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( ℎ ‘ 𝑖 ) = 𝑁 ) } ) |
120 |
118 119
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → 𝑑 ∈ { ℎ ∣ ( ℎ : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( ℎ ‘ 𝑖 ) = 𝑁 ) } ) |
121 |
|
vex |
⊢ 𝑑 ∈ V |
122 |
|
feq1 |
⊢ ( ℎ = 𝑑 → ( ℎ : 𝑆 ⟶ ℕ0 ↔ 𝑑 : 𝑆 ⟶ ℕ0 ) ) |
123 |
|
simpl |
⊢ ( ( ℎ = 𝑑 ∧ 𝑖 ∈ 𝑆 ) → ℎ = 𝑑 ) |
124 |
123
|
fveq1d |
⊢ ( ( ℎ = 𝑑 ∧ 𝑖 ∈ 𝑆 ) → ( ℎ ‘ 𝑖 ) = ( 𝑑 ‘ 𝑖 ) ) |
125 |
124
|
sumeq2dv |
⊢ ( ℎ = 𝑑 → Σ 𝑖 ∈ 𝑆 ( ℎ ‘ 𝑖 ) = Σ 𝑖 ∈ 𝑆 ( 𝑑 ‘ 𝑖 ) ) |
126 |
125
|
eqeq1d |
⊢ ( ℎ = 𝑑 → ( Σ 𝑖 ∈ 𝑆 ( ℎ ‘ 𝑖 ) = 𝑁 ↔ Σ 𝑖 ∈ 𝑆 ( 𝑑 ‘ 𝑖 ) = 𝑁 ) ) |
127 |
122 126
|
anbi12d |
⊢ ( ℎ = 𝑑 → ( ( ℎ : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( ℎ ‘ 𝑖 ) = 𝑁 ) ↔ ( 𝑑 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑑 ‘ 𝑖 ) = 𝑁 ) ) ) |
128 |
121 127
|
elab |
⊢ ( 𝑑 ∈ { ℎ ∣ ( ℎ : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( ℎ ‘ 𝑖 ) = 𝑁 ) } ↔ ( 𝑑 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑑 ‘ 𝑖 ) = 𝑁 ) ) |
129 |
120 128
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → ( 𝑑 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑑 ‘ 𝑖 ) = 𝑁 ) ) |
130 |
129
|
simpld |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → 𝑑 : 𝑆 ⟶ ℕ0 ) |
131 |
|
ffn |
⊢ ( 𝑑 : 𝑆 ⟶ ℕ0 → 𝑑 Fn 𝑆 ) |
132 |
130 131
|
syl |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → 𝑑 Fn 𝑆 ) |
133 |
|
dffn5 |
⊢ ( 𝑑 Fn 𝑆 ↔ 𝑑 = ( 𝑥 ∈ 𝑆 ↦ ( 𝑑 ‘ 𝑥 ) ) ) |
134 |
132 133
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → 𝑑 = ( 𝑥 ∈ 𝑆 ↦ ( 𝑑 ‘ 𝑥 ) ) ) |
135 |
134
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → ( 𝑥 ∈ 𝑆 ↦ ( 𝑑 ‘ 𝑥 ) ) = 𝑑 ) |
136 |
117 135
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → ( 𝑥 ∈ 𝑆 ↦ ( 𝑑 ‘ ( 𝑍 ‘ ( ◡ 𝑍 ‘ 𝑥 ) ) ) ) = 𝑑 ) |
137 |
111 136
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → ( 𝑥 ∈ 𝑆 ↦ ( ( 𝑦 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑑 ‘ ( 𝑍 ‘ 𝑦 ) ) ) ‘ ( ◡ 𝑍 ‘ 𝑥 ) ) ) = 𝑑 ) |
138 |
98 137
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → ( 𝑥 ∈ 𝑆 ↦ ( ( 𝐺 ‘ 𝑑 ) ‘ ( ◡ 𝑍 ‘ 𝑥 ) ) ) = 𝑑 ) |
139 |
88 138
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐵 ) → ( 𝐹 ‘ ( 𝐺 ‘ 𝑑 ) ) = 𝑑 ) |
140 |
139
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑑 ∈ 𝐵 ( 𝐹 ‘ ( 𝐺 ‘ 𝑑 ) ) = 𝑑 ) |
141 |
8 9 80 140
|
2fvidf1od |
⊢ ( 𝜑 → 𝐹 : 𝐴 –1-1-onto→ 𝐵 ) |