| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sticksstones19.1 |
|
| 2 |
|
sticksstones19.2 |
|
| 3 |
|
sticksstones19.3 |
|
| 4 |
|
sticksstones19.4 |
|
| 5 |
|
sticksstones19.5 |
|
| 6 |
|
sticksstones19.6 |
|
| 7 |
|
sticksstones19.7 |
|
| 8 |
1 2 3 4 5 6
|
sticksstones18 |
|
| 9 |
1 2 3 4 5 7
|
sticksstones17 |
|
| 10 |
7
|
a1i |
|
| 11 |
|
simplr |
|
| 12 |
11
|
fveq1d |
|
| 13 |
12
|
mpteq2dva |
|
| 14 |
8
|
ffvelcdmda |
|
| 15 |
|
fzfid |
|
| 16 |
15
|
mptexd |
|
| 17 |
10 13 14 16
|
fvmptd |
|
| 18 |
6
|
a1i |
|
| 19 |
18
|
fveq1d |
|
| 20 |
19
|
fveq1d |
|
| 21 |
20
|
3expa |
|
| 22 |
21
|
mpteq2dva |
|
| 23 |
|
eqidd |
|
| 24 |
|
simplr |
|
| 25 |
24
|
fveq1d |
|
| 26 |
25
|
mpteq2dva |
|
| 27 |
|
simplr |
|
| 28 |
|
fzfid |
|
| 29 |
|
f1oenfi |
|
| 30 |
28 5 29
|
syl2anc |
|
| 31 |
30
|
ensymd |
|
| 32 |
|
enfii |
|
| 33 |
28 31 32
|
syl2anc |
|
| 34 |
33
|
adantr |
|
| 35 |
34
|
adantr |
|
| 36 |
35
|
mptexd |
|
| 37 |
23 26 27 36
|
fvmptd |
|
| 38 |
37
|
fveq1d |
|
| 39 |
38
|
mpteq2dva |
|
| 40 |
|
eqidd |
|
| 41 |
|
simpr |
|
| 42 |
41
|
fveq2d |
|
| 43 |
42
|
fveq2d |
|
| 44 |
|
f1of |
|
| 45 |
5 44
|
syl |
|
| 46 |
45
|
adantr |
|
| 47 |
46
|
ffvelcdmda |
|
| 48 |
|
fvexd |
|
| 49 |
40 43 47 48
|
fvmptd |
|
| 50 |
49
|
mpteq2dva |
|
| 51 |
5
|
ad2antrr |
|
| 52 |
|
simpr |
|
| 53 |
|
f1ocnvfv1 |
|
| 54 |
51 52 53
|
syl2anc |
|
| 55 |
54
|
fveq2d |
|
| 56 |
55
|
mpteq2dva |
|
| 57 |
|
simpr |
|
| 58 |
3
|
a1i |
|
| 59 |
57 58
|
eleqtrd |
|
| 60 |
|
vex |
|
| 61 |
|
feq1 |
|
| 62 |
|
simpl |
|
| 63 |
62
|
fveq1d |
|
| 64 |
63
|
sumeq2dv |
|
| 65 |
64
|
eqeq1d |
|
| 66 |
61 65
|
anbi12d |
|
| 67 |
60 66
|
elab |
|
| 68 |
59 67
|
sylib |
|
| 69 |
68
|
simpld |
|
| 70 |
|
ffn |
|
| 71 |
69 70
|
syl |
|
| 72 |
|
dffn5 |
|
| 73 |
71 72
|
sylib |
|
| 74 |
73
|
eqcomd |
|
| 75 |
56 74
|
eqtrd |
|
| 76 |
50 75
|
eqtrd |
|
| 77 |
39 76
|
eqtrd |
|
| 78 |
22 77
|
eqtrd |
|
| 79 |
17 78
|
eqtrd |
|
| 80 |
79
|
ralrimiva |
|
| 81 |
6
|
a1i |
|
| 82 |
|
simplr |
|
| 83 |
82
|
fveq1d |
|
| 84 |
83
|
mpteq2dva |
|
| 85 |
9
|
ffvelcdmda |
|
| 86 |
33
|
adantr |
|
| 87 |
86
|
mptexd |
|
| 88 |
81 84 85 87
|
fvmptd |
|
| 89 |
7
|
a1i |
|
| 90 |
|
simplr |
|
| 91 |
90
|
fveq1d |
|
| 92 |
91
|
mpteq2dva |
|
| 93 |
|
simplr |
|
| 94 |
|
fzfid |
|
| 95 |
94
|
mptexd |
|
| 96 |
89 92 93 95
|
fvmptd |
|
| 97 |
96
|
fveq1d |
|
| 98 |
97
|
mpteq2dva |
|
| 99 |
|
eqidd |
|
| 100 |
|
simpr |
|
| 101 |
100
|
fveq2d |
|
| 102 |
101
|
fveq2d |
|
| 103 |
|
f1ocnv |
|
| 104 |
5 103
|
syl |
|
| 105 |
|
f1of |
|
| 106 |
104 105
|
syl |
|
| 107 |
106
|
adantr |
|
| 108 |
107
|
ffvelcdmda |
|
| 109 |
|
fvexd |
|
| 110 |
99 102 108 109
|
fvmptd |
|
| 111 |
110
|
mpteq2dva |
|
| 112 |
5
|
ad2antrr |
|
| 113 |
|
simpr |
|
| 114 |
|
f1ocnvfv2 |
|
| 115 |
112 113 114
|
syl2anc |
|
| 116 |
115
|
fveq2d |
|
| 117 |
116
|
mpteq2dva |
|
| 118 |
|
simpr |
|
| 119 |
4
|
a1i |
|
| 120 |
118 119
|
eleqtrd |
|
| 121 |
|
vex |
|
| 122 |
|
feq1 |
|
| 123 |
|
simpl |
|
| 124 |
123
|
fveq1d |
|
| 125 |
124
|
sumeq2dv |
|
| 126 |
125
|
eqeq1d |
|
| 127 |
122 126
|
anbi12d |
|
| 128 |
121 127
|
elab |
|
| 129 |
120 128
|
sylib |
|
| 130 |
129
|
simpld |
|
| 131 |
|
ffn |
|
| 132 |
130 131
|
syl |
|
| 133 |
|
dffn5 |
|
| 134 |
132 133
|
sylib |
|
| 135 |
134
|
eqcomd |
|
| 136 |
117 135
|
eqtrd |
|
| 137 |
111 136
|
eqtrd |
|
| 138 |
98 137
|
eqtrd |
|
| 139 |
88 138
|
eqtrd |
|
| 140 |
139
|
ralrimiva |
|
| 141 |
8 9 80 140
|
2fvidf1od |
|