Step |
Hyp |
Ref |
Expression |
1 |
|
sticksstones19.1 |
|- ( ph -> N e. NN0 ) |
2 |
|
sticksstones19.2 |
|- ( ph -> K e. NN0 ) |
3 |
|
sticksstones19.3 |
|- A = { g | ( g : ( 1 ... K ) --> NN0 /\ sum_ i e. ( 1 ... K ) ( g ` i ) = N ) } |
4 |
|
sticksstones19.4 |
|- B = { h | ( h : S --> NN0 /\ sum_ i e. S ( h ` i ) = N ) } |
5 |
|
sticksstones19.5 |
|- ( ph -> Z : ( 1 ... K ) -1-1-onto-> S ) |
6 |
|
sticksstones19.6 |
|- F = ( a e. A |-> ( x e. S |-> ( a ` ( `' Z ` x ) ) ) ) |
7 |
|
sticksstones19.7 |
|- G = ( b e. B |-> ( y e. ( 1 ... K ) |-> ( b ` ( Z ` y ) ) ) ) |
8 |
1 2 3 4 5 6
|
sticksstones18 |
|- ( ph -> F : A --> B ) |
9 |
1 2 3 4 5 7
|
sticksstones17 |
|- ( ph -> G : B --> A ) |
10 |
7
|
a1i |
|- ( ( ph /\ c e. A ) -> G = ( b e. B |-> ( y e. ( 1 ... K ) |-> ( b ` ( Z ` y ) ) ) ) ) |
11 |
|
simplr |
|- ( ( ( ( ph /\ c e. A ) /\ b = ( F ` c ) ) /\ y e. ( 1 ... K ) ) -> b = ( F ` c ) ) |
12 |
11
|
fveq1d |
|- ( ( ( ( ph /\ c e. A ) /\ b = ( F ` c ) ) /\ y e. ( 1 ... K ) ) -> ( b ` ( Z ` y ) ) = ( ( F ` c ) ` ( Z ` y ) ) ) |
13 |
12
|
mpteq2dva |
|- ( ( ( ph /\ c e. A ) /\ b = ( F ` c ) ) -> ( y e. ( 1 ... K ) |-> ( b ` ( Z ` y ) ) ) = ( y e. ( 1 ... K ) |-> ( ( F ` c ) ` ( Z ` y ) ) ) ) |
14 |
8
|
ffvelrnda |
|- ( ( ph /\ c e. A ) -> ( F ` c ) e. B ) |
15 |
|
fzfid |
|- ( ( ph /\ c e. A ) -> ( 1 ... K ) e. Fin ) |
16 |
15
|
mptexd |
|- ( ( ph /\ c e. A ) -> ( y e. ( 1 ... K ) |-> ( ( F ` c ) ` ( Z ` y ) ) ) e. _V ) |
17 |
10 13 14 16
|
fvmptd |
|- ( ( ph /\ c e. A ) -> ( G ` ( F ` c ) ) = ( y e. ( 1 ... K ) |-> ( ( F ` c ) ` ( Z ` y ) ) ) ) |
18 |
6
|
a1i |
|- ( ( ph /\ c e. A /\ y e. ( 1 ... K ) ) -> F = ( a e. A |-> ( x e. S |-> ( a ` ( `' Z ` x ) ) ) ) ) |
19 |
18
|
fveq1d |
|- ( ( ph /\ c e. A /\ y e. ( 1 ... K ) ) -> ( F ` c ) = ( ( a e. A |-> ( x e. S |-> ( a ` ( `' Z ` x ) ) ) ) ` c ) ) |
20 |
19
|
fveq1d |
|- ( ( ph /\ c e. A /\ y e. ( 1 ... K ) ) -> ( ( F ` c ) ` ( Z ` y ) ) = ( ( ( a e. A |-> ( x e. S |-> ( a ` ( `' Z ` x ) ) ) ) ` c ) ` ( Z ` y ) ) ) |
21 |
20
|
3expa |
|- ( ( ( ph /\ c e. A ) /\ y e. ( 1 ... K ) ) -> ( ( F ` c ) ` ( Z ` y ) ) = ( ( ( a e. A |-> ( x e. S |-> ( a ` ( `' Z ` x ) ) ) ) ` c ) ` ( Z ` y ) ) ) |
22 |
21
|
mpteq2dva |
|- ( ( ph /\ c e. A ) -> ( y e. ( 1 ... K ) |-> ( ( F ` c ) ` ( Z ` y ) ) ) = ( y e. ( 1 ... K ) |-> ( ( ( a e. A |-> ( x e. S |-> ( a ` ( `' Z ` x ) ) ) ) ` c ) ` ( Z ` y ) ) ) ) |
23 |
|
eqidd |
|- ( ( ( ph /\ c e. A ) /\ y e. ( 1 ... K ) ) -> ( a e. A |-> ( x e. S |-> ( a ` ( `' Z ` x ) ) ) ) = ( a e. A |-> ( x e. S |-> ( a ` ( `' Z ` x ) ) ) ) ) |
24 |
|
simplr |
|- ( ( ( ( ( ph /\ c e. A ) /\ y e. ( 1 ... K ) ) /\ a = c ) /\ x e. S ) -> a = c ) |
25 |
24
|
fveq1d |
|- ( ( ( ( ( ph /\ c e. A ) /\ y e. ( 1 ... K ) ) /\ a = c ) /\ x e. S ) -> ( a ` ( `' Z ` x ) ) = ( c ` ( `' Z ` x ) ) ) |
26 |
25
|
mpteq2dva |
|- ( ( ( ( ph /\ c e. A ) /\ y e. ( 1 ... K ) ) /\ a = c ) -> ( x e. S |-> ( a ` ( `' Z ` x ) ) ) = ( x e. S |-> ( c ` ( `' Z ` x ) ) ) ) |
27 |
|
simplr |
|- ( ( ( ph /\ c e. A ) /\ y e. ( 1 ... K ) ) -> c e. A ) |
28 |
|
fzfid |
|- ( ph -> ( 1 ... K ) e. Fin ) |
29 |
|
f1oenfi |
|- ( ( ( 1 ... K ) e. Fin /\ Z : ( 1 ... K ) -1-1-onto-> S ) -> ( 1 ... K ) ~~ S ) |
30 |
28 5 29
|
syl2anc |
|- ( ph -> ( 1 ... K ) ~~ S ) |
31 |
30
|
ensymd |
|- ( ph -> S ~~ ( 1 ... K ) ) |
32 |
|
enfii |
|- ( ( ( 1 ... K ) e. Fin /\ S ~~ ( 1 ... K ) ) -> S e. Fin ) |
33 |
28 31 32
|
syl2anc |
|- ( ph -> S e. Fin ) |
34 |
33
|
adantr |
|- ( ( ph /\ c e. A ) -> S e. Fin ) |
35 |
34
|
adantr |
|- ( ( ( ph /\ c e. A ) /\ y e. ( 1 ... K ) ) -> S e. Fin ) |
36 |
35
|
mptexd |
|- ( ( ( ph /\ c e. A ) /\ y e. ( 1 ... K ) ) -> ( x e. S |-> ( c ` ( `' Z ` x ) ) ) e. _V ) |
37 |
23 26 27 36
|
fvmptd |
|- ( ( ( ph /\ c e. A ) /\ y e. ( 1 ... K ) ) -> ( ( a e. A |-> ( x e. S |-> ( a ` ( `' Z ` x ) ) ) ) ` c ) = ( x e. S |-> ( c ` ( `' Z ` x ) ) ) ) |
38 |
37
|
fveq1d |
|- ( ( ( ph /\ c e. A ) /\ y e. ( 1 ... K ) ) -> ( ( ( a e. A |-> ( x e. S |-> ( a ` ( `' Z ` x ) ) ) ) ` c ) ` ( Z ` y ) ) = ( ( x e. S |-> ( c ` ( `' Z ` x ) ) ) ` ( Z ` y ) ) ) |
39 |
38
|
mpteq2dva |
|- ( ( ph /\ c e. A ) -> ( y e. ( 1 ... K ) |-> ( ( ( a e. A |-> ( x e. S |-> ( a ` ( `' Z ` x ) ) ) ) ` c ) ` ( Z ` y ) ) ) = ( y e. ( 1 ... K ) |-> ( ( x e. S |-> ( c ` ( `' Z ` x ) ) ) ` ( Z ` y ) ) ) ) |
40 |
|
eqidd |
|- ( ( ( ph /\ c e. A ) /\ y e. ( 1 ... K ) ) -> ( x e. S |-> ( c ` ( `' Z ` x ) ) ) = ( x e. S |-> ( c ` ( `' Z ` x ) ) ) ) |
41 |
|
simpr |
|- ( ( ( ( ph /\ c e. A ) /\ y e. ( 1 ... K ) ) /\ x = ( Z ` y ) ) -> x = ( Z ` y ) ) |
42 |
41
|
fveq2d |
|- ( ( ( ( ph /\ c e. A ) /\ y e. ( 1 ... K ) ) /\ x = ( Z ` y ) ) -> ( `' Z ` x ) = ( `' Z ` ( Z ` y ) ) ) |
43 |
42
|
fveq2d |
|- ( ( ( ( ph /\ c e. A ) /\ y e. ( 1 ... K ) ) /\ x = ( Z ` y ) ) -> ( c ` ( `' Z ` x ) ) = ( c ` ( `' Z ` ( Z ` y ) ) ) ) |
44 |
|
f1of |
|- ( Z : ( 1 ... K ) -1-1-onto-> S -> Z : ( 1 ... K ) --> S ) |
45 |
5 44
|
syl |
|- ( ph -> Z : ( 1 ... K ) --> S ) |
46 |
45
|
adantr |
|- ( ( ph /\ c e. A ) -> Z : ( 1 ... K ) --> S ) |
47 |
46
|
ffvelrnda |
|- ( ( ( ph /\ c e. A ) /\ y e. ( 1 ... K ) ) -> ( Z ` y ) e. S ) |
48 |
|
fvexd |
|- ( ( ( ph /\ c e. A ) /\ y e. ( 1 ... K ) ) -> ( c ` ( `' Z ` ( Z ` y ) ) ) e. _V ) |
49 |
40 43 47 48
|
fvmptd |
|- ( ( ( ph /\ c e. A ) /\ y e. ( 1 ... K ) ) -> ( ( x e. S |-> ( c ` ( `' Z ` x ) ) ) ` ( Z ` y ) ) = ( c ` ( `' Z ` ( Z ` y ) ) ) ) |
50 |
49
|
mpteq2dva |
|- ( ( ph /\ c e. A ) -> ( y e. ( 1 ... K ) |-> ( ( x e. S |-> ( c ` ( `' Z ` x ) ) ) ` ( Z ` y ) ) ) = ( y e. ( 1 ... K ) |-> ( c ` ( `' Z ` ( Z ` y ) ) ) ) ) |
51 |
5
|
ad2antrr |
|- ( ( ( ph /\ c e. A ) /\ y e. ( 1 ... K ) ) -> Z : ( 1 ... K ) -1-1-onto-> S ) |
52 |
|
simpr |
|- ( ( ( ph /\ c e. A ) /\ y e. ( 1 ... K ) ) -> y e. ( 1 ... K ) ) |
53 |
|
f1ocnvfv1 |
|- ( ( Z : ( 1 ... K ) -1-1-onto-> S /\ y e. ( 1 ... K ) ) -> ( `' Z ` ( Z ` y ) ) = y ) |
54 |
51 52 53
|
syl2anc |
|- ( ( ( ph /\ c e. A ) /\ y e. ( 1 ... K ) ) -> ( `' Z ` ( Z ` y ) ) = y ) |
55 |
54
|
fveq2d |
|- ( ( ( ph /\ c e. A ) /\ y e. ( 1 ... K ) ) -> ( c ` ( `' Z ` ( Z ` y ) ) ) = ( c ` y ) ) |
56 |
55
|
mpteq2dva |
|- ( ( ph /\ c e. A ) -> ( y e. ( 1 ... K ) |-> ( c ` ( `' Z ` ( Z ` y ) ) ) ) = ( y e. ( 1 ... K ) |-> ( c ` y ) ) ) |
57 |
|
simpr |
|- ( ( ph /\ c e. A ) -> c e. A ) |
58 |
3
|
a1i |
|- ( ( ph /\ c e. A ) -> A = { g | ( g : ( 1 ... K ) --> NN0 /\ sum_ i e. ( 1 ... K ) ( g ` i ) = N ) } ) |
59 |
57 58
|
eleqtrd |
|- ( ( ph /\ c e. A ) -> c e. { g | ( g : ( 1 ... K ) --> NN0 /\ sum_ i e. ( 1 ... K ) ( g ` i ) = N ) } ) |
60 |
|
vex |
|- c e. _V |
61 |
|
feq1 |
|- ( g = c -> ( g : ( 1 ... K ) --> NN0 <-> c : ( 1 ... K ) --> NN0 ) ) |
62 |
|
simpl |
|- ( ( g = c /\ i e. ( 1 ... K ) ) -> g = c ) |
63 |
62
|
fveq1d |
|- ( ( g = c /\ i e. ( 1 ... K ) ) -> ( g ` i ) = ( c ` i ) ) |
64 |
63
|
sumeq2dv |
|- ( g = c -> sum_ i e. ( 1 ... K ) ( g ` i ) = sum_ i e. ( 1 ... K ) ( c ` i ) ) |
65 |
64
|
eqeq1d |
|- ( g = c -> ( sum_ i e. ( 1 ... K ) ( g ` i ) = N <-> sum_ i e. ( 1 ... K ) ( c ` i ) = N ) ) |
66 |
61 65
|
anbi12d |
|- ( g = c -> ( ( g : ( 1 ... K ) --> NN0 /\ sum_ i e. ( 1 ... K ) ( g ` i ) = N ) <-> ( c : ( 1 ... K ) --> NN0 /\ sum_ i e. ( 1 ... K ) ( c ` i ) = N ) ) ) |
67 |
60 66
|
elab |
|- ( c e. { g | ( g : ( 1 ... K ) --> NN0 /\ sum_ i e. ( 1 ... K ) ( g ` i ) = N ) } <-> ( c : ( 1 ... K ) --> NN0 /\ sum_ i e. ( 1 ... K ) ( c ` i ) = N ) ) |
68 |
59 67
|
sylib |
|- ( ( ph /\ c e. A ) -> ( c : ( 1 ... K ) --> NN0 /\ sum_ i e. ( 1 ... K ) ( c ` i ) = N ) ) |
69 |
68
|
simpld |
|- ( ( ph /\ c e. A ) -> c : ( 1 ... K ) --> NN0 ) |
70 |
|
ffn |
|- ( c : ( 1 ... K ) --> NN0 -> c Fn ( 1 ... K ) ) |
71 |
69 70
|
syl |
|- ( ( ph /\ c e. A ) -> c Fn ( 1 ... K ) ) |
72 |
|
dffn5 |
|- ( c Fn ( 1 ... K ) <-> c = ( y e. ( 1 ... K ) |-> ( c ` y ) ) ) |
73 |
71 72
|
sylib |
|- ( ( ph /\ c e. A ) -> c = ( y e. ( 1 ... K ) |-> ( c ` y ) ) ) |
74 |
73
|
eqcomd |
|- ( ( ph /\ c e. A ) -> ( y e. ( 1 ... K ) |-> ( c ` y ) ) = c ) |
75 |
56 74
|
eqtrd |
|- ( ( ph /\ c e. A ) -> ( y e. ( 1 ... K ) |-> ( c ` ( `' Z ` ( Z ` y ) ) ) ) = c ) |
76 |
50 75
|
eqtrd |
|- ( ( ph /\ c e. A ) -> ( y e. ( 1 ... K ) |-> ( ( x e. S |-> ( c ` ( `' Z ` x ) ) ) ` ( Z ` y ) ) ) = c ) |
77 |
39 76
|
eqtrd |
|- ( ( ph /\ c e. A ) -> ( y e. ( 1 ... K ) |-> ( ( ( a e. A |-> ( x e. S |-> ( a ` ( `' Z ` x ) ) ) ) ` c ) ` ( Z ` y ) ) ) = c ) |
78 |
22 77
|
eqtrd |
|- ( ( ph /\ c e. A ) -> ( y e. ( 1 ... K ) |-> ( ( F ` c ) ` ( Z ` y ) ) ) = c ) |
79 |
17 78
|
eqtrd |
|- ( ( ph /\ c e. A ) -> ( G ` ( F ` c ) ) = c ) |
80 |
79
|
ralrimiva |
|- ( ph -> A. c e. A ( G ` ( F ` c ) ) = c ) |
81 |
6
|
a1i |
|- ( ( ph /\ d e. B ) -> F = ( a e. A |-> ( x e. S |-> ( a ` ( `' Z ` x ) ) ) ) ) |
82 |
|
simplr |
|- ( ( ( ( ph /\ d e. B ) /\ a = ( G ` d ) ) /\ x e. S ) -> a = ( G ` d ) ) |
83 |
82
|
fveq1d |
|- ( ( ( ( ph /\ d e. B ) /\ a = ( G ` d ) ) /\ x e. S ) -> ( a ` ( `' Z ` x ) ) = ( ( G ` d ) ` ( `' Z ` x ) ) ) |
84 |
83
|
mpteq2dva |
|- ( ( ( ph /\ d e. B ) /\ a = ( G ` d ) ) -> ( x e. S |-> ( a ` ( `' Z ` x ) ) ) = ( x e. S |-> ( ( G ` d ) ` ( `' Z ` x ) ) ) ) |
85 |
9
|
ffvelrnda |
|- ( ( ph /\ d e. B ) -> ( G ` d ) e. A ) |
86 |
33
|
adantr |
|- ( ( ph /\ d e. B ) -> S e. Fin ) |
87 |
86
|
mptexd |
|- ( ( ph /\ d e. B ) -> ( x e. S |-> ( ( G ` d ) ` ( `' Z ` x ) ) ) e. _V ) |
88 |
81 84 85 87
|
fvmptd |
|- ( ( ph /\ d e. B ) -> ( F ` ( G ` d ) ) = ( x e. S |-> ( ( G ` d ) ` ( `' Z ` x ) ) ) ) |
89 |
7
|
a1i |
|- ( ( ( ph /\ d e. B ) /\ x e. S ) -> G = ( b e. B |-> ( y e. ( 1 ... K ) |-> ( b ` ( Z ` y ) ) ) ) ) |
90 |
|
simplr |
|- ( ( ( ( ( ph /\ d e. B ) /\ x e. S ) /\ b = d ) /\ y e. ( 1 ... K ) ) -> b = d ) |
91 |
90
|
fveq1d |
|- ( ( ( ( ( ph /\ d e. B ) /\ x e. S ) /\ b = d ) /\ y e. ( 1 ... K ) ) -> ( b ` ( Z ` y ) ) = ( d ` ( Z ` y ) ) ) |
92 |
91
|
mpteq2dva |
|- ( ( ( ( ph /\ d e. B ) /\ x e. S ) /\ b = d ) -> ( y e. ( 1 ... K ) |-> ( b ` ( Z ` y ) ) ) = ( y e. ( 1 ... K ) |-> ( d ` ( Z ` y ) ) ) ) |
93 |
|
simplr |
|- ( ( ( ph /\ d e. B ) /\ x e. S ) -> d e. B ) |
94 |
|
fzfid |
|- ( ( ( ph /\ d e. B ) /\ x e. S ) -> ( 1 ... K ) e. Fin ) |
95 |
94
|
mptexd |
|- ( ( ( ph /\ d e. B ) /\ x e. S ) -> ( y e. ( 1 ... K ) |-> ( d ` ( Z ` y ) ) ) e. _V ) |
96 |
89 92 93 95
|
fvmptd |
|- ( ( ( ph /\ d e. B ) /\ x e. S ) -> ( G ` d ) = ( y e. ( 1 ... K ) |-> ( d ` ( Z ` y ) ) ) ) |
97 |
96
|
fveq1d |
|- ( ( ( ph /\ d e. B ) /\ x e. S ) -> ( ( G ` d ) ` ( `' Z ` x ) ) = ( ( y e. ( 1 ... K ) |-> ( d ` ( Z ` y ) ) ) ` ( `' Z ` x ) ) ) |
98 |
97
|
mpteq2dva |
|- ( ( ph /\ d e. B ) -> ( x e. S |-> ( ( G ` d ) ` ( `' Z ` x ) ) ) = ( x e. S |-> ( ( y e. ( 1 ... K ) |-> ( d ` ( Z ` y ) ) ) ` ( `' Z ` x ) ) ) ) |
99 |
|
eqidd |
|- ( ( ( ph /\ d e. B ) /\ x e. S ) -> ( y e. ( 1 ... K ) |-> ( d ` ( Z ` y ) ) ) = ( y e. ( 1 ... K ) |-> ( d ` ( Z ` y ) ) ) ) |
100 |
|
simpr |
|- ( ( ( ( ph /\ d e. B ) /\ x e. S ) /\ y = ( `' Z ` x ) ) -> y = ( `' Z ` x ) ) |
101 |
100
|
fveq2d |
|- ( ( ( ( ph /\ d e. B ) /\ x e. S ) /\ y = ( `' Z ` x ) ) -> ( Z ` y ) = ( Z ` ( `' Z ` x ) ) ) |
102 |
101
|
fveq2d |
|- ( ( ( ( ph /\ d e. B ) /\ x e. S ) /\ y = ( `' Z ` x ) ) -> ( d ` ( Z ` y ) ) = ( d ` ( Z ` ( `' Z ` x ) ) ) ) |
103 |
|
f1ocnv |
|- ( Z : ( 1 ... K ) -1-1-onto-> S -> `' Z : S -1-1-onto-> ( 1 ... K ) ) |
104 |
5 103
|
syl |
|- ( ph -> `' Z : S -1-1-onto-> ( 1 ... K ) ) |
105 |
|
f1of |
|- ( `' Z : S -1-1-onto-> ( 1 ... K ) -> `' Z : S --> ( 1 ... K ) ) |
106 |
104 105
|
syl |
|- ( ph -> `' Z : S --> ( 1 ... K ) ) |
107 |
106
|
adantr |
|- ( ( ph /\ d e. B ) -> `' Z : S --> ( 1 ... K ) ) |
108 |
107
|
ffvelrnda |
|- ( ( ( ph /\ d e. B ) /\ x e. S ) -> ( `' Z ` x ) e. ( 1 ... K ) ) |
109 |
|
fvexd |
|- ( ( ( ph /\ d e. B ) /\ x e. S ) -> ( d ` ( Z ` ( `' Z ` x ) ) ) e. _V ) |
110 |
99 102 108 109
|
fvmptd |
|- ( ( ( ph /\ d e. B ) /\ x e. S ) -> ( ( y e. ( 1 ... K ) |-> ( d ` ( Z ` y ) ) ) ` ( `' Z ` x ) ) = ( d ` ( Z ` ( `' Z ` x ) ) ) ) |
111 |
110
|
mpteq2dva |
|- ( ( ph /\ d e. B ) -> ( x e. S |-> ( ( y e. ( 1 ... K ) |-> ( d ` ( Z ` y ) ) ) ` ( `' Z ` x ) ) ) = ( x e. S |-> ( d ` ( Z ` ( `' Z ` x ) ) ) ) ) |
112 |
5
|
ad2antrr |
|- ( ( ( ph /\ d e. B ) /\ x e. S ) -> Z : ( 1 ... K ) -1-1-onto-> S ) |
113 |
|
simpr |
|- ( ( ( ph /\ d e. B ) /\ x e. S ) -> x e. S ) |
114 |
|
f1ocnvfv2 |
|- ( ( Z : ( 1 ... K ) -1-1-onto-> S /\ x e. S ) -> ( Z ` ( `' Z ` x ) ) = x ) |
115 |
112 113 114
|
syl2anc |
|- ( ( ( ph /\ d e. B ) /\ x e. S ) -> ( Z ` ( `' Z ` x ) ) = x ) |
116 |
115
|
fveq2d |
|- ( ( ( ph /\ d e. B ) /\ x e. S ) -> ( d ` ( Z ` ( `' Z ` x ) ) ) = ( d ` x ) ) |
117 |
116
|
mpteq2dva |
|- ( ( ph /\ d e. B ) -> ( x e. S |-> ( d ` ( Z ` ( `' Z ` x ) ) ) ) = ( x e. S |-> ( d ` x ) ) ) |
118 |
|
simpr |
|- ( ( ph /\ d e. B ) -> d e. B ) |
119 |
4
|
a1i |
|- ( ( ph /\ d e. B ) -> B = { h | ( h : S --> NN0 /\ sum_ i e. S ( h ` i ) = N ) } ) |
120 |
118 119
|
eleqtrd |
|- ( ( ph /\ d e. B ) -> d e. { h | ( h : S --> NN0 /\ sum_ i e. S ( h ` i ) = N ) } ) |
121 |
|
vex |
|- d e. _V |
122 |
|
feq1 |
|- ( h = d -> ( h : S --> NN0 <-> d : S --> NN0 ) ) |
123 |
|
simpl |
|- ( ( h = d /\ i e. S ) -> h = d ) |
124 |
123
|
fveq1d |
|- ( ( h = d /\ i e. S ) -> ( h ` i ) = ( d ` i ) ) |
125 |
124
|
sumeq2dv |
|- ( h = d -> sum_ i e. S ( h ` i ) = sum_ i e. S ( d ` i ) ) |
126 |
125
|
eqeq1d |
|- ( h = d -> ( sum_ i e. S ( h ` i ) = N <-> sum_ i e. S ( d ` i ) = N ) ) |
127 |
122 126
|
anbi12d |
|- ( h = d -> ( ( h : S --> NN0 /\ sum_ i e. S ( h ` i ) = N ) <-> ( d : S --> NN0 /\ sum_ i e. S ( d ` i ) = N ) ) ) |
128 |
121 127
|
elab |
|- ( d e. { h | ( h : S --> NN0 /\ sum_ i e. S ( h ` i ) = N ) } <-> ( d : S --> NN0 /\ sum_ i e. S ( d ` i ) = N ) ) |
129 |
120 128
|
sylib |
|- ( ( ph /\ d e. B ) -> ( d : S --> NN0 /\ sum_ i e. S ( d ` i ) = N ) ) |
130 |
129
|
simpld |
|- ( ( ph /\ d e. B ) -> d : S --> NN0 ) |
131 |
|
ffn |
|- ( d : S --> NN0 -> d Fn S ) |
132 |
130 131
|
syl |
|- ( ( ph /\ d e. B ) -> d Fn S ) |
133 |
|
dffn5 |
|- ( d Fn S <-> d = ( x e. S |-> ( d ` x ) ) ) |
134 |
132 133
|
sylib |
|- ( ( ph /\ d e. B ) -> d = ( x e. S |-> ( d ` x ) ) ) |
135 |
134
|
eqcomd |
|- ( ( ph /\ d e. B ) -> ( x e. S |-> ( d ` x ) ) = d ) |
136 |
117 135
|
eqtrd |
|- ( ( ph /\ d e. B ) -> ( x e. S |-> ( d ` ( Z ` ( `' Z ` x ) ) ) ) = d ) |
137 |
111 136
|
eqtrd |
|- ( ( ph /\ d e. B ) -> ( x e. S |-> ( ( y e. ( 1 ... K ) |-> ( d ` ( Z ` y ) ) ) ` ( `' Z ` x ) ) ) = d ) |
138 |
98 137
|
eqtrd |
|- ( ( ph /\ d e. B ) -> ( x e. S |-> ( ( G ` d ) ` ( `' Z ` x ) ) ) = d ) |
139 |
88 138
|
eqtrd |
|- ( ( ph /\ d e. B ) -> ( F ` ( G ` d ) ) = d ) |
140 |
139
|
ralrimiva |
|- ( ph -> A. d e. B ( F ` ( G ` d ) ) = d ) |
141 |
8 9 80 140
|
2fvidf1od |
|- ( ph -> F : A -1-1-onto-> B ) |