Step |
Hyp |
Ref |
Expression |
1 |
|
sticksstones18.1 |
|- ( ph -> N e. NN0 ) |
2 |
|
sticksstones18.2 |
|- ( ph -> K e. NN0 ) |
3 |
|
sticksstones18.3 |
|- A = { g | ( g : ( 1 ... K ) --> NN0 /\ sum_ i e. ( 1 ... K ) ( g ` i ) = N ) } |
4 |
|
sticksstones18.4 |
|- B = { h | ( h : S --> NN0 /\ sum_ i e. S ( h ` i ) = N ) } |
5 |
|
sticksstones18.5 |
|- ( ph -> Z : ( 1 ... K ) -1-1-onto-> S ) |
6 |
|
sticksstones18.6 |
|- F = ( a e. A |-> ( x e. S |-> ( a ` ( `' Z ` x ) ) ) ) |
7 |
3
|
eqimssi |
|- A C_ { g | ( g : ( 1 ... K ) --> NN0 /\ sum_ i e. ( 1 ... K ) ( g ` i ) = N ) } |
8 |
7
|
a1i |
|- ( ph -> A C_ { g | ( g : ( 1 ... K ) --> NN0 /\ sum_ i e. ( 1 ... K ) ( g ` i ) = N ) } ) |
9 |
8
|
sseld |
|- ( ph -> ( a e. A -> a e. { g | ( g : ( 1 ... K ) --> NN0 /\ sum_ i e. ( 1 ... K ) ( g ` i ) = N ) } ) ) |
10 |
9
|
imp |
|- ( ( ph /\ a e. A ) -> a e. { g | ( g : ( 1 ... K ) --> NN0 /\ sum_ i e. ( 1 ... K ) ( g ` i ) = N ) } ) |
11 |
|
vex |
|- a e. _V |
12 |
|
feq1 |
|- ( g = a -> ( g : ( 1 ... K ) --> NN0 <-> a : ( 1 ... K ) --> NN0 ) ) |
13 |
|
simpl |
|- ( ( g = a /\ i e. ( 1 ... K ) ) -> g = a ) |
14 |
13
|
fveq1d |
|- ( ( g = a /\ i e. ( 1 ... K ) ) -> ( g ` i ) = ( a ` i ) ) |
15 |
14
|
sumeq2dv |
|- ( g = a -> sum_ i e. ( 1 ... K ) ( g ` i ) = sum_ i e. ( 1 ... K ) ( a ` i ) ) |
16 |
15
|
eqeq1d |
|- ( g = a -> ( sum_ i e. ( 1 ... K ) ( g ` i ) = N <-> sum_ i e. ( 1 ... K ) ( a ` i ) = N ) ) |
17 |
12 16
|
anbi12d |
|- ( g = a -> ( ( g : ( 1 ... K ) --> NN0 /\ sum_ i e. ( 1 ... K ) ( g ` i ) = N ) <-> ( a : ( 1 ... K ) --> NN0 /\ sum_ i e. ( 1 ... K ) ( a ` i ) = N ) ) ) |
18 |
11 17
|
elab |
|- ( a e. { g | ( g : ( 1 ... K ) --> NN0 /\ sum_ i e. ( 1 ... K ) ( g ` i ) = N ) } <-> ( a : ( 1 ... K ) --> NN0 /\ sum_ i e. ( 1 ... K ) ( a ` i ) = N ) ) |
19 |
10 18
|
sylib |
|- ( ( ph /\ a e. A ) -> ( a : ( 1 ... K ) --> NN0 /\ sum_ i e. ( 1 ... K ) ( a ` i ) = N ) ) |
20 |
19
|
simpld |
|- ( ( ph /\ a e. A ) -> a : ( 1 ... K ) --> NN0 ) |
21 |
20
|
adantr |
|- ( ( ( ph /\ a e. A ) /\ x e. S ) -> a : ( 1 ... K ) --> NN0 ) |
22 |
|
f1ocnv |
|- ( Z : ( 1 ... K ) -1-1-onto-> S -> `' Z : S -1-1-onto-> ( 1 ... K ) ) |
23 |
5 22
|
syl |
|- ( ph -> `' Z : S -1-1-onto-> ( 1 ... K ) ) |
24 |
|
f1of |
|- ( `' Z : S -1-1-onto-> ( 1 ... K ) -> `' Z : S --> ( 1 ... K ) ) |
25 |
23 24
|
syl |
|- ( ph -> `' Z : S --> ( 1 ... K ) ) |
26 |
25
|
adantr |
|- ( ( ph /\ a e. A ) -> `' Z : S --> ( 1 ... K ) ) |
27 |
26
|
ffvelrnda |
|- ( ( ( ph /\ a e. A ) /\ x e. S ) -> ( `' Z ` x ) e. ( 1 ... K ) ) |
28 |
21 27
|
ffvelrnd |
|- ( ( ( ph /\ a e. A ) /\ x e. S ) -> ( a ` ( `' Z ` x ) ) e. NN0 ) |
29 |
28
|
fmpttd |
|- ( ( ph /\ a e. A ) -> ( x e. S |-> ( a ` ( `' Z ` x ) ) ) : S --> NN0 ) |
30 |
|
eqidd |
|- ( ( ( ph /\ a e. A ) /\ i e. S ) -> ( x e. S |-> ( a ` ( `' Z ` x ) ) ) = ( x e. S |-> ( a ` ( `' Z ` x ) ) ) ) |
31 |
|
simpr |
|- ( ( ( ( ph /\ a e. A ) /\ i e. S ) /\ x = i ) -> x = i ) |
32 |
31
|
fveq2d |
|- ( ( ( ( ph /\ a e. A ) /\ i e. S ) /\ x = i ) -> ( `' Z ` x ) = ( `' Z ` i ) ) |
33 |
32
|
fveq2d |
|- ( ( ( ( ph /\ a e. A ) /\ i e. S ) /\ x = i ) -> ( a ` ( `' Z ` x ) ) = ( a ` ( `' Z ` i ) ) ) |
34 |
|
simpr |
|- ( ( ( ph /\ a e. A ) /\ i e. S ) -> i e. S ) |
35 |
|
fvexd |
|- ( ( ( ph /\ a e. A ) /\ i e. S ) -> ( a ` ( `' Z ` i ) ) e. _V ) |
36 |
30 33 34 35
|
fvmptd |
|- ( ( ( ph /\ a e. A ) /\ i e. S ) -> ( ( x e. S |-> ( a ` ( `' Z ` x ) ) ) ` i ) = ( a ` ( `' Z ` i ) ) ) |
37 |
36
|
sumeq2dv |
|- ( ( ph /\ a e. A ) -> sum_ i e. S ( ( x e. S |-> ( a ` ( `' Z ` x ) ) ) ` i ) = sum_ i e. S ( a ` ( `' Z ` i ) ) ) |
38 |
|
fveq2 |
|- ( n = ( `' Z ` i ) -> ( a ` n ) = ( a ` ( `' Z ` i ) ) ) |
39 |
|
fzfid |
|- ( ( ph /\ a e. A ) -> ( 1 ... K ) e. Fin ) |
40 |
5
|
adantr |
|- ( ( ph /\ a e. A ) -> Z : ( 1 ... K ) -1-1-onto-> S ) |
41 |
|
f1oenfi |
|- ( ( ( 1 ... K ) e. Fin /\ Z : ( 1 ... K ) -1-1-onto-> S ) -> ( 1 ... K ) ~~ S ) |
42 |
39 40 41
|
syl2anc |
|- ( ( ph /\ a e. A ) -> ( 1 ... K ) ~~ S ) |
43 |
42
|
ensymd |
|- ( ( ph /\ a e. A ) -> S ~~ ( 1 ... K ) ) |
44 |
|
enfii |
|- ( ( ( 1 ... K ) e. Fin /\ S ~~ ( 1 ... K ) ) -> S e. Fin ) |
45 |
39 43 44
|
syl2anc |
|- ( ( ph /\ a e. A ) -> S e. Fin ) |
46 |
23
|
adantr |
|- ( ( ph /\ a e. A ) -> `' Z : S -1-1-onto-> ( 1 ... K ) ) |
47 |
|
eqidd |
|- ( ( ( ph /\ a e. A ) /\ i e. S ) -> ( `' Z ` i ) = ( `' Z ` i ) ) |
48 |
|
nn0sscn |
|- NN0 C_ CC |
49 |
48
|
a1i |
|- ( ( ph /\ a e. A ) -> NN0 C_ CC ) |
50 |
|
fss |
|- ( ( a : ( 1 ... K ) --> NN0 /\ NN0 C_ CC ) -> a : ( 1 ... K ) --> CC ) |
51 |
20 49 50
|
syl2anc |
|- ( ( ph /\ a e. A ) -> a : ( 1 ... K ) --> CC ) |
52 |
51
|
ffvelrnda |
|- ( ( ( ph /\ a e. A ) /\ n e. ( 1 ... K ) ) -> ( a ` n ) e. CC ) |
53 |
38 45 46 47 52
|
fsumf1o |
|- ( ( ph /\ a e. A ) -> sum_ n e. ( 1 ... K ) ( a ` n ) = sum_ i e. S ( a ` ( `' Z ` i ) ) ) |
54 |
53
|
eqcomd |
|- ( ( ph /\ a e. A ) -> sum_ i e. S ( a ` ( `' Z ` i ) ) = sum_ n e. ( 1 ... K ) ( a ` n ) ) |
55 |
|
fveq2 |
|- ( n = i -> ( a ` n ) = ( a ` i ) ) |
56 |
55
|
cbvsumv |
|- sum_ n e. ( 1 ... K ) ( a ` n ) = sum_ i e. ( 1 ... K ) ( a ` i ) |
57 |
56
|
a1i |
|- ( ( ph /\ a e. A ) -> sum_ n e. ( 1 ... K ) ( a ` n ) = sum_ i e. ( 1 ... K ) ( a ` i ) ) |
58 |
19
|
simprd |
|- ( ( ph /\ a e. A ) -> sum_ i e. ( 1 ... K ) ( a ` i ) = N ) |
59 |
57 58
|
eqtrd |
|- ( ( ph /\ a e. A ) -> sum_ n e. ( 1 ... K ) ( a ` n ) = N ) |
60 |
54 59
|
eqtrd |
|- ( ( ph /\ a e. A ) -> sum_ i e. S ( a ` ( `' Z ` i ) ) = N ) |
61 |
37 60
|
eqtrd |
|- ( ( ph /\ a e. A ) -> sum_ i e. S ( ( x e. S |-> ( a ` ( `' Z ` x ) ) ) ` i ) = N ) |
62 |
29 61
|
jca |
|- ( ( ph /\ a e. A ) -> ( ( x e. S |-> ( a ` ( `' Z ` x ) ) ) : S --> NN0 /\ sum_ i e. S ( ( x e. S |-> ( a ` ( `' Z ` x ) ) ) ` i ) = N ) ) |
63 |
|
fzfid |
|- ( ph -> ( 1 ... K ) e. Fin ) |
64 |
63
|
adantr |
|- ( ( ph /\ a e. A ) -> ( 1 ... K ) e. Fin ) |
65 |
63 5 41
|
syl2anc |
|- ( ph -> ( 1 ... K ) ~~ S ) |
66 |
65
|
ensymd |
|- ( ph -> S ~~ ( 1 ... K ) ) |
67 |
66
|
adantr |
|- ( ( ph /\ a e. A ) -> S ~~ ( 1 ... K ) ) |
68 |
64 67 44
|
syl2anc |
|- ( ( ph /\ a e. A ) -> S e. Fin ) |
69 |
68
|
mptexd |
|- ( ( ph /\ a e. A ) -> ( x e. S |-> ( a ` ( `' Z ` x ) ) ) e. _V ) |
70 |
|
feq1 |
|- ( h = ( x e. S |-> ( a ` ( `' Z ` x ) ) ) -> ( h : S --> NN0 <-> ( x e. S |-> ( a ` ( `' Z ` x ) ) ) : S --> NN0 ) ) |
71 |
|
simpl |
|- ( ( h = ( x e. S |-> ( a ` ( `' Z ` x ) ) ) /\ i e. S ) -> h = ( x e. S |-> ( a ` ( `' Z ` x ) ) ) ) |
72 |
71
|
fveq1d |
|- ( ( h = ( x e. S |-> ( a ` ( `' Z ` x ) ) ) /\ i e. S ) -> ( h ` i ) = ( ( x e. S |-> ( a ` ( `' Z ` x ) ) ) ` i ) ) |
73 |
72
|
sumeq2dv |
|- ( h = ( x e. S |-> ( a ` ( `' Z ` x ) ) ) -> sum_ i e. S ( h ` i ) = sum_ i e. S ( ( x e. S |-> ( a ` ( `' Z ` x ) ) ) ` i ) ) |
74 |
73
|
eqeq1d |
|- ( h = ( x e. S |-> ( a ` ( `' Z ` x ) ) ) -> ( sum_ i e. S ( h ` i ) = N <-> sum_ i e. S ( ( x e. S |-> ( a ` ( `' Z ` x ) ) ) ` i ) = N ) ) |
75 |
70 74
|
anbi12d |
|- ( h = ( x e. S |-> ( a ` ( `' Z ` x ) ) ) -> ( ( h : S --> NN0 /\ sum_ i e. S ( h ` i ) = N ) <-> ( ( x e. S |-> ( a ` ( `' Z ` x ) ) ) : S --> NN0 /\ sum_ i e. S ( ( x e. S |-> ( a ` ( `' Z ` x ) ) ) ` i ) = N ) ) ) |
76 |
75
|
elabg |
|- ( ( x e. S |-> ( a ` ( `' Z ` x ) ) ) e. _V -> ( ( x e. S |-> ( a ` ( `' Z ` x ) ) ) e. { h | ( h : S --> NN0 /\ sum_ i e. S ( h ` i ) = N ) } <-> ( ( x e. S |-> ( a ` ( `' Z ` x ) ) ) : S --> NN0 /\ sum_ i e. S ( ( x e. S |-> ( a ` ( `' Z ` x ) ) ) ` i ) = N ) ) ) |
77 |
69 76
|
syl |
|- ( ( ph /\ a e. A ) -> ( ( x e. S |-> ( a ` ( `' Z ` x ) ) ) e. { h | ( h : S --> NN0 /\ sum_ i e. S ( h ` i ) = N ) } <-> ( ( x e. S |-> ( a ` ( `' Z ` x ) ) ) : S --> NN0 /\ sum_ i e. S ( ( x e. S |-> ( a ` ( `' Z ` x ) ) ) ` i ) = N ) ) ) |
78 |
62 77
|
mpbird |
|- ( ( ph /\ a e. A ) -> ( x e. S |-> ( a ` ( `' Z ` x ) ) ) e. { h | ( h : S --> NN0 /\ sum_ i e. S ( h ` i ) = N ) } ) |
79 |
4
|
a1i |
|- ( ( ph /\ a e. A ) -> B = { h | ( h : S --> NN0 /\ sum_ i e. S ( h ` i ) = N ) } ) |
80 |
78 79
|
eleqtrrd |
|- ( ( ph /\ a e. A ) -> ( x e. S |-> ( a ` ( `' Z ` x ) ) ) e. B ) |
81 |
80 6
|
fmptd |
|- ( ph -> F : A --> B ) |