| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sticksstones18.1 |
|
| 2 |
|
sticksstones18.2 |
|
| 3 |
|
sticksstones18.3 |
|
| 4 |
|
sticksstones18.4 |
|
| 5 |
|
sticksstones18.5 |
|
| 6 |
|
sticksstones18.6 |
|
| 7 |
3
|
eqimssi |
|
| 8 |
7
|
a1i |
|
| 9 |
8
|
sseld |
|
| 10 |
9
|
imp |
|
| 11 |
|
vex |
|
| 12 |
|
feq1 |
|
| 13 |
|
simpl |
|
| 14 |
13
|
fveq1d |
|
| 15 |
14
|
sumeq2dv |
|
| 16 |
15
|
eqeq1d |
|
| 17 |
12 16
|
anbi12d |
|
| 18 |
11 17
|
elab |
|
| 19 |
10 18
|
sylib |
|
| 20 |
19
|
simpld |
|
| 21 |
20
|
adantr |
|
| 22 |
|
f1ocnv |
|
| 23 |
5 22
|
syl |
|
| 24 |
|
f1of |
|
| 25 |
23 24
|
syl |
|
| 26 |
25
|
adantr |
|
| 27 |
26
|
ffvelcdmda |
|
| 28 |
21 27
|
ffvelcdmd |
|
| 29 |
28
|
fmpttd |
|
| 30 |
|
eqidd |
|
| 31 |
|
simpr |
|
| 32 |
31
|
fveq2d |
|
| 33 |
32
|
fveq2d |
|
| 34 |
|
simpr |
|
| 35 |
|
fvexd |
|
| 36 |
30 33 34 35
|
fvmptd |
|
| 37 |
36
|
sumeq2dv |
|
| 38 |
|
fveq2 |
|
| 39 |
|
fzfid |
|
| 40 |
5
|
adantr |
|
| 41 |
|
f1oenfi |
|
| 42 |
39 40 41
|
syl2anc |
|
| 43 |
42
|
ensymd |
|
| 44 |
|
enfii |
|
| 45 |
39 43 44
|
syl2anc |
|
| 46 |
23
|
adantr |
|
| 47 |
|
eqidd |
|
| 48 |
|
nn0sscn |
|
| 49 |
48
|
a1i |
|
| 50 |
|
fss |
|
| 51 |
20 49 50
|
syl2anc |
|
| 52 |
51
|
ffvelcdmda |
|
| 53 |
38 45 46 47 52
|
fsumf1o |
|
| 54 |
53
|
eqcomd |
|
| 55 |
|
fveq2 |
|
| 56 |
55
|
cbvsumv |
|
| 57 |
56
|
a1i |
|
| 58 |
19
|
simprd |
|
| 59 |
57 58
|
eqtrd |
|
| 60 |
54 59
|
eqtrd |
|
| 61 |
37 60
|
eqtrd |
|
| 62 |
29 61
|
jca |
|
| 63 |
|
fzfid |
|
| 64 |
63
|
adantr |
|
| 65 |
63 5 41
|
syl2anc |
|
| 66 |
65
|
ensymd |
|
| 67 |
66
|
adantr |
|
| 68 |
64 67 44
|
syl2anc |
|
| 69 |
68
|
mptexd |
|
| 70 |
|
feq1 |
|
| 71 |
|
simpl |
|
| 72 |
71
|
fveq1d |
|
| 73 |
72
|
sumeq2dv |
|
| 74 |
73
|
eqeq1d |
|
| 75 |
70 74
|
anbi12d |
|
| 76 |
75
|
elabg |
|
| 77 |
69 76
|
syl |
|
| 78 |
62 77
|
mpbird |
|
| 79 |
4
|
a1i |
|
| 80 |
78 79
|
eleqtrrd |
|
| 81 |
80 6
|
fmptd |
|