Step |
Hyp |
Ref |
Expression |
1 |
|
sticksstones18.1 |
|
2 |
|
sticksstones18.2 |
|
3 |
|
sticksstones18.3 |
|
4 |
|
sticksstones18.4 |
|
5 |
|
sticksstones18.5 |
|
6 |
|
sticksstones18.6 |
|
7 |
3
|
eqimssi |
|
8 |
7
|
a1i |
|
9 |
8
|
sseld |
|
10 |
9
|
imp |
|
11 |
|
vex |
|
12 |
|
feq1 |
|
13 |
|
simpl |
|
14 |
13
|
fveq1d |
|
15 |
14
|
sumeq2dv |
|
16 |
15
|
eqeq1d |
|
17 |
12 16
|
anbi12d |
|
18 |
11 17
|
elab |
|
19 |
10 18
|
sylib |
|
20 |
19
|
simpld |
|
21 |
20
|
adantr |
|
22 |
|
f1ocnv |
|
23 |
5 22
|
syl |
|
24 |
|
f1of |
|
25 |
23 24
|
syl |
|
26 |
25
|
adantr |
|
27 |
26
|
ffvelrnda |
|
28 |
21 27
|
ffvelrnd |
|
29 |
28
|
fmpttd |
|
30 |
|
eqidd |
|
31 |
|
simpr |
|
32 |
31
|
fveq2d |
|
33 |
32
|
fveq2d |
|
34 |
|
simpr |
|
35 |
|
fvexd |
|
36 |
30 33 34 35
|
fvmptd |
|
37 |
36
|
sumeq2dv |
|
38 |
|
fveq2 |
|
39 |
|
fzfid |
|
40 |
5
|
adantr |
|
41 |
|
f1oenfi |
|
42 |
39 40 41
|
syl2anc |
|
43 |
42
|
ensymd |
|
44 |
|
enfii |
|
45 |
39 43 44
|
syl2anc |
|
46 |
23
|
adantr |
|
47 |
|
eqidd |
|
48 |
|
nn0sscn |
|
49 |
48
|
a1i |
|
50 |
|
fss |
|
51 |
20 49 50
|
syl2anc |
|
52 |
51
|
ffvelrnda |
|
53 |
38 45 46 47 52
|
fsumf1o |
|
54 |
53
|
eqcomd |
|
55 |
|
fveq2 |
|
56 |
55
|
cbvsumv |
|
57 |
56
|
a1i |
|
58 |
19
|
simprd |
|
59 |
57 58
|
eqtrd |
|
60 |
54 59
|
eqtrd |
|
61 |
37 60
|
eqtrd |
|
62 |
29 61
|
jca |
|
63 |
|
fzfid |
|
64 |
63
|
adantr |
|
65 |
63 5 41
|
syl2anc |
|
66 |
65
|
ensymd |
|
67 |
66
|
adantr |
|
68 |
64 67 44
|
syl2anc |
|
69 |
68
|
mptexd |
|
70 |
|
feq1 |
|
71 |
|
simpl |
|
72 |
71
|
fveq1d |
|
73 |
72
|
sumeq2dv |
|
74 |
73
|
eqeq1d |
|
75 |
70 74
|
anbi12d |
|
76 |
75
|
elabg |
|
77 |
69 76
|
syl |
|
78 |
62 77
|
mpbird |
|
79 |
4
|
a1i |
|
80 |
78 79
|
eleqtrrd |
|
81 |
80 6
|
fmptd |
|