Step |
Hyp |
Ref |
Expression |
1 |
|
sticksstones15.1 |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
2 |
|
sticksstones15.2 |
⊢ ( 𝜑 → 𝐾 ∈ ℕ0 ) |
3 |
|
sticksstones15.3 |
⊢ 𝐴 = { 𝑔 ∣ ( 𝑔 : ( 1 ... ( 𝐾 + 1 ) ) ⟶ ℕ0 ∧ Σ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ( 𝑔 ‘ 𝑖 ) = 𝑁 ) } |
4 |
|
eqid |
⊢ ( 𝑣 ∈ 𝐴 ↦ ( 𝑧 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑧 + Σ 𝑡 ∈ ( 1 ... 𝑧 ) ( 𝑣 ‘ 𝑡 ) ) ) ) = ( 𝑣 ∈ 𝐴 ↦ ( 𝑧 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑧 + Σ 𝑡 ∈ ( 1 ... 𝑧 ) ( 𝑣 ‘ 𝑡 ) ) ) ) |
5 |
|
eqid |
⊢ ( 𝑢 ∈ { 𝑙 ∣ ( 𝑙 : ( 1 ... 𝐾 ) ⟶ ( 1 ... ( 𝑁 + 𝐾 ) ) ∧ ∀ 𝑥 ∈ ( 1 ... 𝐾 ) ∀ 𝑦 ∈ ( 1 ... 𝐾 ) ( 𝑥 < 𝑦 → ( 𝑙 ‘ 𝑥 ) < ( 𝑙 ‘ 𝑦 ) ) ) } ↦ if ( 𝐾 = 0 , { 〈 1 , 𝑁 〉 } , ( 𝑤 ∈ ( 1 ... ( 𝐾 + 1 ) ) ↦ if ( 𝑤 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑢 ‘ 𝐾 ) ) , if ( 𝑤 = 1 , ( ( 𝑢 ‘ 1 ) − 1 ) , ( ( ( 𝑢 ‘ 𝑤 ) − ( 𝑢 ‘ ( 𝑤 − 1 ) ) ) − 1 ) ) ) ) ) ) = ( 𝑢 ∈ { 𝑙 ∣ ( 𝑙 : ( 1 ... 𝐾 ) ⟶ ( 1 ... ( 𝑁 + 𝐾 ) ) ∧ ∀ 𝑥 ∈ ( 1 ... 𝐾 ) ∀ 𝑦 ∈ ( 1 ... 𝐾 ) ( 𝑥 < 𝑦 → ( 𝑙 ‘ 𝑥 ) < ( 𝑙 ‘ 𝑦 ) ) ) } ↦ if ( 𝐾 = 0 , { 〈 1 , 𝑁 〉 } , ( 𝑤 ∈ ( 1 ... ( 𝐾 + 1 ) ) ↦ if ( 𝑤 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑢 ‘ 𝐾 ) ) , if ( 𝑤 = 1 , ( ( 𝑢 ‘ 1 ) − 1 ) , ( ( ( 𝑢 ‘ 𝑤 ) − ( 𝑢 ‘ ( 𝑤 − 1 ) ) ) − 1 ) ) ) ) ) ) |
6 |
|
feq1 |
⊢ ( 𝑙 = 𝑓 → ( 𝑙 : ( 1 ... 𝐾 ) ⟶ ( 1 ... ( 𝑁 + 𝐾 ) ) ↔ 𝑓 : ( 1 ... 𝐾 ) ⟶ ( 1 ... ( 𝑁 + 𝐾 ) ) ) ) |
7 |
|
fveq1 |
⊢ ( 𝑙 = 𝑓 → ( 𝑙 ‘ 𝑥 ) = ( 𝑓 ‘ 𝑥 ) ) |
8 |
|
fveq1 |
⊢ ( 𝑙 = 𝑓 → ( 𝑙 ‘ 𝑦 ) = ( 𝑓 ‘ 𝑦 ) ) |
9 |
7 8
|
breq12d |
⊢ ( 𝑙 = 𝑓 → ( ( 𝑙 ‘ 𝑥 ) < ( 𝑙 ‘ 𝑦 ) ↔ ( 𝑓 ‘ 𝑥 ) < ( 𝑓 ‘ 𝑦 ) ) ) |
10 |
9
|
imbi2d |
⊢ ( 𝑙 = 𝑓 → ( ( 𝑥 < 𝑦 → ( 𝑙 ‘ 𝑥 ) < ( 𝑙 ‘ 𝑦 ) ) ↔ ( 𝑥 < 𝑦 → ( 𝑓 ‘ 𝑥 ) < ( 𝑓 ‘ 𝑦 ) ) ) ) |
11 |
10
|
2ralbidv |
⊢ ( 𝑙 = 𝑓 → ( ∀ 𝑥 ∈ ( 1 ... 𝐾 ) ∀ 𝑦 ∈ ( 1 ... 𝐾 ) ( 𝑥 < 𝑦 → ( 𝑙 ‘ 𝑥 ) < ( 𝑙 ‘ 𝑦 ) ) ↔ ∀ 𝑥 ∈ ( 1 ... 𝐾 ) ∀ 𝑦 ∈ ( 1 ... 𝐾 ) ( 𝑥 < 𝑦 → ( 𝑓 ‘ 𝑥 ) < ( 𝑓 ‘ 𝑦 ) ) ) ) |
12 |
6 11
|
anbi12d |
⊢ ( 𝑙 = 𝑓 → ( ( 𝑙 : ( 1 ... 𝐾 ) ⟶ ( 1 ... ( 𝑁 + 𝐾 ) ) ∧ ∀ 𝑥 ∈ ( 1 ... 𝐾 ) ∀ 𝑦 ∈ ( 1 ... 𝐾 ) ( 𝑥 < 𝑦 → ( 𝑙 ‘ 𝑥 ) < ( 𝑙 ‘ 𝑦 ) ) ) ↔ ( 𝑓 : ( 1 ... 𝐾 ) ⟶ ( 1 ... ( 𝑁 + 𝐾 ) ) ∧ ∀ 𝑥 ∈ ( 1 ... 𝐾 ) ∀ 𝑦 ∈ ( 1 ... 𝐾 ) ( 𝑥 < 𝑦 → ( 𝑓 ‘ 𝑥 ) < ( 𝑓 ‘ 𝑦 ) ) ) ) ) |
13 |
12
|
cbvabv |
⊢ { 𝑙 ∣ ( 𝑙 : ( 1 ... 𝐾 ) ⟶ ( 1 ... ( 𝑁 + 𝐾 ) ) ∧ ∀ 𝑥 ∈ ( 1 ... 𝐾 ) ∀ 𝑦 ∈ ( 1 ... 𝐾 ) ( 𝑥 < 𝑦 → ( 𝑙 ‘ 𝑥 ) < ( 𝑙 ‘ 𝑦 ) ) ) } = { 𝑓 ∣ ( 𝑓 : ( 1 ... 𝐾 ) ⟶ ( 1 ... ( 𝑁 + 𝐾 ) ) ∧ ∀ 𝑥 ∈ ( 1 ... 𝐾 ) ∀ 𝑦 ∈ ( 1 ... 𝐾 ) ( 𝑥 < 𝑦 → ( 𝑓 ‘ 𝑥 ) < ( 𝑓 ‘ 𝑦 ) ) ) } |
14 |
1 2 4 5 3 13
|
sticksstones14 |
⊢ ( 𝜑 → ( ♯ ‘ 𝐴 ) = ( ( 𝑁 + 𝐾 ) C 𝐾 ) ) |