Step |
Hyp |
Ref |
Expression |
1 |
|
sticksstones14.1 |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
2 |
|
sticksstones14.2 |
⊢ ( 𝜑 → 𝐾 ∈ ℕ0 ) |
3 |
|
sticksstones14.3 |
⊢ 𝐹 = ( 𝑎 ∈ 𝐴 ↦ ( 𝑗 ∈ ( 1 ... 𝐾 ) ↦ ( 𝑗 + Σ 𝑙 ∈ ( 1 ... 𝑗 ) ( 𝑎 ‘ 𝑙 ) ) ) ) |
4 |
|
sticksstones14.4 |
⊢ 𝐺 = ( 𝑏 ∈ 𝐵 ↦ if ( 𝐾 = 0 , { 〈 1 , 𝑁 〉 } , ( 𝑘 ∈ ( 1 ... ( 𝐾 + 1 ) ) ↦ if ( 𝑘 = ( 𝐾 + 1 ) , ( ( 𝑁 + 𝐾 ) − ( 𝑏 ‘ 𝐾 ) ) , if ( 𝑘 = 1 , ( ( 𝑏 ‘ 1 ) − 1 ) , ( ( ( 𝑏 ‘ 𝑘 ) − ( 𝑏 ‘ ( 𝑘 − 1 ) ) ) − 1 ) ) ) ) ) ) |
5 |
|
sticksstones14.5 |
⊢ 𝐴 = { 𝑔 ∣ ( 𝑔 : ( 1 ... ( 𝐾 + 1 ) ) ⟶ ℕ0 ∧ Σ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ( 𝑔 ‘ 𝑖 ) = 𝑁 ) } |
6 |
|
sticksstones14.6 |
⊢ 𝐵 = { 𝑓 ∣ ( 𝑓 : ( 1 ... 𝐾 ) ⟶ ( 1 ... ( 𝑁 + 𝐾 ) ) ∧ ∀ 𝑥 ∈ ( 1 ... 𝐾 ) ∀ 𝑦 ∈ ( 1 ... 𝐾 ) ( 𝑥 < 𝑦 → ( 𝑓 ‘ 𝑥 ) < ( 𝑓 ‘ 𝑦 ) ) ) } |
7 |
5
|
a1i |
⊢ ( 𝜑 → 𝐴 = { 𝑔 ∣ ( 𝑔 : ( 1 ... ( 𝐾 + 1 ) ) ⟶ ℕ0 ∧ Σ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ( 𝑔 ‘ 𝑖 ) = 𝑁 ) } ) |
8 |
|
simpl |
⊢ ( ( 𝑔 : ( 1 ... ( 𝐾 + 1 ) ) ⟶ ℕ0 ∧ Σ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ( 𝑔 ‘ 𝑖 ) = 𝑁 ) → 𝑔 : ( 1 ... ( 𝐾 + 1 ) ) ⟶ ℕ0 ) |
9 |
8
|
a1i |
⊢ ( 𝜑 → ( ( 𝑔 : ( 1 ... ( 𝐾 + 1 ) ) ⟶ ℕ0 ∧ Σ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ( 𝑔 ‘ 𝑖 ) = 𝑁 ) → 𝑔 : ( 1 ... ( 𝐾 + 1 ) ) ⟶ ℕ0 ) ) |
10 |
9
|
ss2abdv |
⊢ ( 𝜑 → { 𝑔 ∣ ( 𝑔 : ( 1 ... ( 𝐾 + 1 ) ) ⟶ ℕ0 ∧ Σ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ( 𝑔 ‘ 𝑖 ) = 𝑁 ) } ⊆ { 𝑔 ∣ 𝑔 : ( 1 ... ( 𝐾 + 1 ) ) ⟶ ℕ0 } ) |
11 |
|
fzfid |
⊢ ( 𝜑 → ( 1 ... ( 𝐾 + 1 ) ) ∈ Fin ) |
12 |
|
nn0ex |
⊢ ℕ0 ∈ V |
13 |
12
|
a1i |
⊢ ( 𝜑 → ℕ0 ∈ V ) |
14 |
|
mapex |
⊢ ( ( ( 1 ... ( 𝐾 + 1 ) ) ∈ Fin ∧ ℕ0 ∈ V ) → { 𝑔 ∣ 𝑔 : ( 1 ... ( 𝐾 + 1 ) ) ⟶ ℕ0 } ∈ V ) |
15 |
11 13 14
|
syl2anc |
⊢ ( 𝜑 → { 𝑔 ∣ 𝑔 : ( 1 ... ( 𝐾 + 1 ) ) ⟶ ℕ0 } ∈ V ) |
16 |
|
ssexg |
⊢ ( ( { 𝑔 ∣ ( 𝑔 : ( 1 ... ( 𝐾 + 1 ) ) ⟶ ℕ0 ∧ Σ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ( 𝑔 ‘ 𝑖 ) = 𝑁 ) } ⊆ { 𝑔 ∣ 𝑔 : ( 1 ... ( 𝐾 + 1 ) ) ⟶ ℕ0 } ∧ { 𝑔 ∣ 𝑔 : ( 1 ... ( 𝐾 + 1 ) ) ⟶ ℕ0 } ∈ V ) → { 𝑔 ∣ ( 𝑔 : ( 1 ... ( 𝐾 + 1 ) ) ⟶ ℕ0 ∧ Σ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ( 𝑔 ‘ 𝑖 ) = 𝑁 ) } ∈ V ) |
17 |
10 15 16
|
syl2anc |
⊢ ( 𝜑 → { 𝑔 ∣ ( 𝑔 : ( 1 ... ( 𝐾 + 1 ) ) ⟶ ℕ0 ∧ Σ 𝑖 ∈ ( 1 ... ( 𝐾 + 1 ) ) ( 𝑔 ‘ 𝑖 ) = 𝑁 ) } ∈ V ) |
18 |
7 17
|
eqeltrd |
⊢ ( 𝜑 → 𝐴 ∈ V ) |
19 |
1 2 3 4 5 6
|
sticksstones13 |
⊢ ( 𝜑 → 𝐹 : 𝐴 –1-1-onto→ 𝐵 ) |
20 |
18 19
|
hasheqf1od |
⊢ ( 𝜑 → ( ♯ ‘ 𝐴 ) = ( ♯ ‘ 𝐵 ) ) |
21 |
1 2
|
nn0addcld |
⊢ ( 𝜑 → ( 𝑁 + 𝐾 ) ∈ ℕ0 ) |
22 |
21 2 6
|
sticksstones5 |
⊢ ( 𝜑 → ( ♯ ‘ 𝐵 ) = ( ( 𝑁 + 𝐾 ) C 𝐾 ) ) |
23 |
20 22
|
eqtrd |
⊢ ( 𝜑 → ( ♯ ‘ 𝐴 ) = ( ( 𝑁 + 𝐾 ) C 𝐾 ) ) |