Metamath Proof Explorer


Theorem swoso

Description: If the incomparability relation is equivalent to equality in a subset, then the partial order strictly orders the subset. (Contributed by Mario Carneiro, 30-Dec-2014)

Ref Expression
Hypotheses swoer.1 𝑅 = ( ( 𝑋 × 𝑋 ) ∖ ( < < ) )
swoer.2 ( ( 𝜑 ∧ ( 𝑦𝑋𝑧𝑋 ) ) → ( 𝑦 < 𝑧 → ¬ 𝑧 < 𝑦 ) )
swoer.3 ( ( 𝜑 ∧ ( 𝑥𝑋𝑦𝑋𝑧𝑋 ) ) → ( 𝑥 < 𝑦 → ( 𝑥 < 𝑧𝑧 < 𝑦 ) ) )
swoso.4 ( 𝜑𝑌𝑋 )
swoso.5 ( ( 𝜑 ∧ ( 𝑥𝑌𝑦𝑌𝑥 𝑅 𝑦 ) ) → 𝑥 = 𝑦 )
Assertion swoso ( 𝜑< Or 𝑌 )

Proof

Step Hyp Ref Expression
1 swoer.1 𝑅 = ( ( 𝑋 × 𝑋 ) ∖ ( < < ) )
2 swoer.2 ( ( 𝜑 ∧ ( 𝑦𝑋𝑧𝑋 ) ) → ( 𝑦 < 𝑧 → ¬ 𝑧 < 𝑦 ) )
3 swoer.3 ( ( 𝜑 ∧ ( 𝑥𝑋𝑦𝑋𝑧𝑋 ) ) → ( 𝑥 < 𝑦 → ( 𝑥 < 𝑧𝑧 < 𝑦 ) ) )
4 swoso.4 ( 𝜑𝑌𝑋 )
5 swoso.5 ( ( 𝜑 ∧ ( 𝑥𝑌𝑦𝑌𝑥 𝑅 𝑦 ) ) → 𝑥 = 𝑦 )
6 2 3 swopo ( 𝜑< Po 𝑋 )
7 poss ( 𝑌𝑋 → ( < Po 𝑋< Po 𝑌 ) )
8 4 6 7 sylc ( 𝜑< Po 𝑌 )
9 4 sselda ( ( 𝜑𝑥𝑌 ) → 𝑥𝑋 )
10 4 sselda ( ( 𝜑𝑦𝑌 ) → 𝑦𝑋 )
11 9 10 anim12dan ( ( 𝜑 ∧ ( 𝑥𝑌𝑦𝑌 ) ) → ( 𝑥𝑋𝑦𝑋 ) )
12 1 brdifun ( ( 𝑥𝑋𝑦𝑋 ) → ( 𝑥 𝑅 𝑦 ↔ ¬ ( 𝑥 < 𝑦𝑦 < 𝑥 ) ) )
13 11 12 syl ( ( 𝜑 ∧ ( 𝑥𝑌𝑦𝑌 ) ) → ( 𝑥 𝑅 𝑦 ↔ ¬ ( 𝑥 < 𝑦𝑦 < 𝑥 ) ) )
14 df-3an ( ( 𝑥𝑌𝑦𝑌𝑥 𝑅 𝑦 ) ↔ ( ( 𝑥𝑌𝑦𝑌 ) ∧ 𝑥 𝑅 𝑦 ) )
15 14 5 sylan2br ( ( 𝜑 ∧ ( ( 𝑥𝑌𝑦𝑌 ) ∧ 𝑥 𝑅 𝑦 ) ) → 𝑥 = 𝑦 )
16 15 expr ( ( 𝜑 ∧ ( 𝑥𝑌𝑦𝑌 ) ) → ( 𝑥 𝑅 𝑦𝑥 = 𝑦 ) )
17 13 16 sylbird ( ( 𝜑 ∧ ( 𝑥𝑌𝑦𝑌 ) ) → ( ¬ ( 𝑥 < 𝑦𝑦 < 𝑥 ) → 𝑥 = 𝑦 ) )
18 17 orrd ( ( 𝜑 ∧ ( 𝑥𝑌𝑦𝑌 ) ) → ( ( 𝑥 < 𝑦𝑦 < 𝑥 ) ∨ 𝑥 = 𝑦 ) )
19 3orcomb ( ( 𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥 ) ↔ ( 𝑥 < 𝑦𝑦 < 𝑥𝑥 = 𝑦 ) )
20 df-3or ( ( 𝑥 < 𝑦𝑦 < 𝑥𝑥 = 𝑦 ) ↔ ( ( 𝑥 < 𝑦𝑦 < 𝑥 ) ∨ 𝑥 = 𝑦 ) )
21 19 20 bitri ( ( 𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥 ) ↔ ( ( 𝑥 < 𝑦𝑦 < 𝑥 ) ∨ 𝑥 = 𝑦 ) )
22 18 21 sylibr ( ( 𝜑 ∧ ( 𝑥𝑌𝑦𝑌 ) ) → ( 𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥 ) )
23 8 22 issod ( 𝜑< Or 𝑌 )