| Step |
Hyp |
Ref |
Expression |
| 1 |
|
swoer.1 |
⊢ 𝑅 = ( ( 𝑋 × 𝑋 ) ∖ ( < ∪ ◡ < ) ) |
| 2 |
|
swoer.2 |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( 𝑦 < 𝑧 → ¬ 𝑧 < 𝑦 ) ) |
| 3 |
|
swoer.3 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( 𝑥 < 𝑦 → ( 𝑥 < 𝑧 ∨ 𝑧 < 𝑦 ) ) ) |
| 4 |
|
swoso.4 |
⊢ ( 𝜑 → 𝑌 ⊆ 𝑋 ) |
| 5 |
|
swoso.5 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑌 ∧ 𝑥 𝑅 𝑦 ) ) → 𝑥 = 𝑦 ) |
| 6 |
2 3
|
swopo |
⊢ ( 𝜑 → < Po 𝑋 ) |
| 7 |
|
poss |
⊢ ( 𝑌 ⊆ 𝑋 → ( < Po 𝑋 → < Po 𝑌 ) ) |
| 8 |
4 6 7
|
sylc |
⊢ ( 𝜑 → < Po 𝑌 ) |
| 9 |
4
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) → 𝑥 ∈ 𝑋 ) |
| 10 |
4
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑌 ) → 𝑦 ∈ 𝑋 ) |
| 11 |
9 10
|
anim12dan |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑌 ) ) → ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) |
| 12 |
1
|
brdifun |
⊢ ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( 𝑥 𝑅 𝑦 ↔ ¬ ( 𝑥 < 𝑦 ∨ 𝑦 < 𝑥 ) ) ) |
| 13 |
11 12
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑌 ) ) → ( 𝑥 𝑅 𝑦 ↔ ¬ ( 𝑥 < 𝑦 ∨ 𝑦 < 𝑥 ) ) ) |
| 14 |
|
df-3an |
⊢ ( ( 𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑌 ∧ 𝑥 𝑅 𝑦 ) ↔ ( ( 𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑌 ) ∧ 𝑥 𝑅 𝑦 ) ) |
| 15 |
14 5
|
sylan2br |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑌 ) ∧ 𝑥 𝑅 𝑦 ) ) → 𝑥 = 𝑦 ) |
| 16 |
15
|
expr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑌 ) ) → ( 𝑥 𝑅 𝑦 → 𝑥 = 𝑦 ) ) |
| 17 |
13 16
|
sylbird |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑌 ) ) → ( ¬ ( 𝑥 < 𝑦 ∨ 𝑦 < 𝑥 ) → 𝑥 = 𝑦 ) ) |
| 18 |
17
|
orrd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑌 ) ) → ( ( 𝑥 < 𝑦 ∨ 𝑦 < 𝑥 ) ∨ 𝑥 = 𝑦 ) ) |
| 19 |
|
3orcomb |
⊢ ( ( 𝑥 < 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 < 𝑥 ) ↔ ( 𝑥 < 𝑦 ∨ 𝑦 < 𝑥 ∨ 𝑥 = 𝑦 ) ) |
| 20 |
|
df-3or |
⊢ ( ( 𝑥 < 𝑦 ∨ 𝑦 < 𝑥 ∨ 𝑥 = 𝑦 ) ↔ ( ( 𝑥 < 𝑦 ∨ 𝑦 < 𝑥 ) ∨ 𝑥 = 𝑦 ) ) |
| 21 |
19 20
|
bitri |
⊢ ( ( 𝑥 < 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 < 𝑥 ) ↔ ( ( 𝑥 < 𝑦 ∨ 𝑦 < 𝑥 ) ∨ 𝑥 = 𝑦 ) ) |
| 22 |
18 21
|
sylibr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑌 ) ) → ( 𝑥 < 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 < 𝑥 ) ) |
| 23 |
8 22
|
issod |
⊢ ( 𝜑 → < Or 𝑌 ) |