Metamath Proof Explorer


Theorem sxbrsigalem6

Description: First direction for sxbrsiga , same as sxbrsigalem6, dealing with the antecedents. (Contributed by Thierry Arnoux, 10-Oct-2017)

Ref Expression
Hypothesis sxbrsiga.0 𝐽 = ( topGen ‘ ran (,) )
Assertion sxbrsigalem6 ( sigaGen ‘ ( 𝐽 ×t 𝐽 ) ) ⊆ ( 𝔅 ×s 𝔅 )

Proof

Step Hyp Ref Expression
1 sxbrsiga.0 𝐽 = ( topGen ‘ ran (,) )
2 oveq1 ( 𝑎 = 𝑥 → ( 𝑎 / ( 2 ↑ 𝑚 ) ) = ( 𝑥 / ( 2 ↑ 𝑚 ) ) )
3 oveq1 ( 𝑎 = 𝑥 → ( 𝑎 + 1 ) = ( 𝑥 + 1 ) )
4 3 oveq1d ( 𝑎 = 𝑥 → ( ( 𝑎 + 1 ) / ( 2 ↑ 𝑚 ) ) = ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑚 ) ) )
5 2 4 oveq12d ( 𝑎 = 𝑥 → ( ( 𝑎 / ( 2 ↑ 𝑚 ) ) [,) ( ( 𝑎 + 1 ) / ( 2 ↑ 𝑚 ) ) ) = ( ( 𝑥 / ( 2 ↑ 𝑚 ) ) [,) ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑚 ) ) ) )
6 oveq2 ( 𝑚 = 𝑛 → ( 2 ↑ 𝑚 ) = ( 2 ↑ 𝑛 ) )
7 6 oveq2d ( 𝑚 = 𝑛 → ( 𝑥 / ( 2 ↑ 𝑚 ) ) = ( 𝑥 / ( 2 ↑ 𝑛 ) ) )
8 6 oveq2d ( 𝑚 = 𝑛 → ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑚 ) ) = ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑛 ) ) )
9 7 8 oveq12d ( 𝑚 = 𝑛 → ( ( 𝑥 / ( 2 ↑ 𝑚 ) ) [,) ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑚 ) ) ) = ( ( 𝑥 / ( 2 ↑ 𝑛 ) ) [,) ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑛 ) ) ) )
10 5 9 cbvmpov ( 𝑎 ∈ ℤ , 𝑚 ∈ ℤ ↦ ( ( 𝑎 / ( 2 ↑ 𝑚 ) ) [,) ( ( 𝑎 + 1 ) / ( 2 ↑ 𝑚 ) ) ) ) = ( 𝑥 ∈ ℤ , 𝑛 ∈ ℤ ↦ ( ( 𝑥 / ( 2 ↑ 𝑛 ) ) [,) ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑛 ) ) ) )
11 eqid ( 𝑢 ∈ ran ( 𝑎 ∈ ℤ , 𝑚 ∈ ℤ ↦ ( ( 𝑎 / ( 2 ↑ 𝑚 ) ) [,) ( ( 𝑎 + 1 ) / ( 2 ↑ 𝑚 ) ) ) ) , 𝑣 ∈ ran ( 𝑎 ∈ ℤ , 𝑚 ∈ ℤ ↦ ( ( 𝑎 / ( 2 ↑ 𝑚 ) ) [,) ( ( 𝑎 + 1 ) / ( 2 ↑ 𝑚 ) ) ) ) ↦ ( 𝑢 × 𝑣 ) ) = ( 𝑢 ∈ ran ( 𝑎 ∈ ℤ , 𝑚 ∈ ℤ ↦ ( ( 𝑎 / ( 2 ↑ 𝑚 ) ) [,) ( ( 𝑎 + 1 ) / ( 2 ↑ 𝑚 ) ) ) ) , 𝑣 ∈ ran ( 𝑎 ∈ ℤ , 𝑚 ∈ ℤ ↦ ( ( 𝑎 / ( 2 ↑ 𝑚 ) ) [,) ( ( 𝑎 + 1 ) / ( 2 ↑ 𝑚 ) ) ) ) ↦ ( 𝑢 × 𝑣 ) )
12 1 10 11 sxbrsigalem5 ( sigaGen ‘ ( 𝐽 ×t 𝐽 ) ) ⊆ ( 𝔅 ×s 𝔅 )