| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sxbrsiga.0 |
⊢ 𝐽 = ( topGen ‘ ran (,) ) |
| 2 |
|
oveq1 |
⊢ ( 𝑎 = 𝑥 → ( 𝑎 / ( 2 ↑ 𝑚 ) ) = ( 𝑥 / ( 2 ↑ 𝑚 ) ) ) |
| 3 |
|
oveq1 |
⊢ ( 𝑎 = 𝑥 → ( 𝑎 + 1 ) = ( 𝑥 + 1 ) ) |
| 4 |
3
|
oveq1d |
⊢ ( 𝑎 = 𝑥 → ( ( 𝑎 + 1 ) / ( 2 ↑ 𝑚 ) ) = ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑚 ) ) ) |
| 5 |
2 4
|
oveq12d |
⊢ ( 𝑎 = 𝑥 → ( ( 𝑎 / ( 2 ↑ 𝑚 ) ) [,) ( ( 𝑎 + 1 ) / ( 2 ↑ 𝑚 ) ) ) = ( ( 𝑥 / ( 2 ↑ 𝑚 ) ) [,) ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑚 ) ) ) ) |
| 6 |
|
oveq2 |
⊢ ( 𝑚 = 𝑛 → ( 2 ↑ 𝑚 ) = ( 2 ↑ 𝑛 ) ) |
| 7 |
6
|
oveq2d |
⊢ ( 𝑚 = 𝑛 → ( 𝑥 / ( 2 ↑ 𝑚 ) ) = ( 𝑥 / ( 2 ↑ 𝑛 ) ) ) |
| 8 |
6
|
oveq2d |
⊢ ( 𝑚 = 𝑛 → ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑚 ) ) = ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑛 ) ) ) |
| 9 |
7 8
|
oveq12d |
⊢ ( 𝑚 = 𝑛 → ( ( 𝑥 / ( 2 ↑ 𝑚 ) ) [,) ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑚 ) ) ) = ( ( 𝑥 / ( 2 ↑ 𝑛 ) ) [,) ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑛 ) ) ) ) |
| 10 |
5 9
|
cbvmpov |
⊢ ( 𝑎 ∈ ℤ , 𝑚 ∈ ℤ ↦ ( ( 𝑎 / ( 2 ↑ 𝑚 ) ) [,) ( ( 𝑎 + 1 ) / ( 2 ↑ 𝑚 ) ) ) ) = ( 𝑥 ∈ ℤ , 𝑛 ∈ ℤ ↦ ( ( 𝑥 / ( 2 ↑ 𝑛 ) ) [,) ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑛 ) ) ) ) |
| 11 |
|
eqid |
⊢ ( 𝑢 ∈ ran ( 𝑎 ∈ ℤ , 𝑚 ∈ ℤ ↦ ( ( 𝑎 / ( 2 ↑ 𝑚 ) ) [,) ( ( 𝑎 + 1 ) / ( 2 ↑ 𝑚 ) ) ) ) , 𝑣 ∈ ran ( 𝑎 ∈ ℤ , 𝑚 ∈ ℤ ↦ ( ( 𝑎 / ( 2 ↑ 𝑚 ) ) [,) ( ( 𝑎 + 1 ) / ( 2 ↑ 𝑚 ) ) ) ) ↦ ( 𝑢 × 𝑣 ) ) = ( 𝑢 ∈ ran ( 𝑎 ∈ ℤ , 𝑚 ∈ ℤ ↦ ( ( 𝑎 / ( 2 ↑ 𝑚 ) ) [,) ( ( 𝑎 + 1 ) / ( 2 ↑ 𝑚 ) ) ) ) , 𝑣 ∈ ran ( 𝑎 ∈ ℤ , 𝑚 ∈ ℤ ↦ ( ( 𝑎 / ( 2 ↑ 𝑚 ) ) [,) ( ( 𝑎 + 1 ) / ( 2 ↑ 𝑚 ) ) ) ) ↦ ( 𝑢 × 𝑣 ) ) |
| 12 |
1 10 11
|
sxbrsigalem5 |
⊢ ( sigaGen ‘ ( 𝐽 ×t 𝐽 ) ) ⊆ ( 𝔅ℝ ×s 𝔅ℝ ) |