Metamath Proof Explorer


Theorem sxbrsigalem6

Description: First direction for sxbrsiga , same as sxbrsigalem6, dealing with the antecedents. (Contributed by Thierry Arnoux, 10-Oct-2017)

Ref Expression
Hypothesis sxbrsiga.0 J = topGen ran .
Assertion sxbrsigalem6 𝛔 J × t J 𝔅 × s 𝔅

Proof

Step Hyp Ref Expression
1 sxbrsiga.0 J = topGen ran .
2 oveq1 a = x a 2 m = x 2 m
3 oveq1 a = x a + 1 = x + 1
4 3 oveq1d a = x a + 1 2 m = x + 1 2 m
5 2 4 oveq12d a = x a 2 m a + 1 2 m = x 2 m x + 1 2 m
6 oveq2 m = n 2 m = 2 n
7 6 oveq2d m = n x 2 m = x 2 n
8 6 oveq2d m = n x + 1 2 m = x + 1 2 n
9 7 8 oveq12d m = n x 2 m x + 1 2 m = x 2 n x + 1 2 n
10 5 9 cbvmpov a , m a 2 m a + 1 2 m = x , n x 2 n x + 1 2 n
11 eqid u ran a , m a 2 m a + 1 2 m , v ran a , m a 2 m a + 1 2 m u × v = u ran a , m a 2 m a + 1 2 m , v ran a , m a 2 m a + 1 2 m u × v
12 1 10 11 sxbrsigalem5 𝛔 J × t J 𝔅 × s 𝔅