Metamath Proof Explorer


Theorem sxbrsigalem5

Description: First direction for sxbrsiga . (Contributed by Thierry Arnoux, 22-Sep-2017) (Revised by Thierry Arnoux, 11-Oct-2017)

Ref Expression
Hypotheses sxbrsiga.0 J=topGenran.
dya2ioc.1 I=x,nx2nx+12n
dya2ioc.2 R=uranI,vranIu×v
Assertion sxbrsigalem5 𝛔J×tJ𝔅×s𝔅

Proof

Step Hyp Ref Expression
1 sxbrsiga.0 J=topGenran.
2 dya2ioc.1 I=x,nx2nx+12n
3 dya2ioc.2 R=uranI,vranIu×v
4 1 2 3 dya2iocucvr ranR=2
5 br2base rane𝔅,f𝔅e×f=2
6 4 5 eqtr4i ranR=rane𝔅,f𝔅e×f
7 brsigarn 𝔅sigAlgebra
8 7 elexi 𝔅V
9 8 8 mpoex e𝔅,f𝔅e×fV
10 9 rnex rane𝔅,f𝔅e×fV
11 1 2 dya2icobrsiga ranI𝔅
12 11 sseli uranIu𝔅
13 11 sseli vranIv𝔅
14 12 13 anim12i uranIvranIu𝔅v𝔅
15 14 anim1i uranIvranIg=u×vu𝔅v𝔅g=u×v
16 15 ssoprab2i uvg|uranIvranIg=u×vuvg|u𝔅v𝔅g=u×v
17 df-mpo uranI,vranIu×v=uvg|uranIvranIg=u×v
18 3 17 eqtri R=uvg|uranIvranIg=u×v
19 xpeq1 e=ue×f=u×f
20 xpeq2 f=vu×f=u×v
21 19 20 cbvmpov e𝔅,f𝔅e×f=u𝔅,v𝔅u×v
22 df-mpo u𝔅,v𝔅u×v=uvg|u𝔅v𝔅g=u×v
23 21 22 eqtri e𝔅,f𝔅e×f=uvg|u𝔅v𝔅g=u×v
24 16 18 23 3sstr4i Re𝔅,f𝔅e×f
25 rnss Re𝔅,f𝔅e×franRrane𝔅,f𝔅e×f
26 24 25 ax-mp ranRrane𝔅,f𝔅e×f
27 sssigagen2 rane𝔅,f𝔅e×fVranRrane𝔅,f𝔅e×franR𝛔rane𝔅,f𝔅e×f
28 10 26 27 mp2an ranR𝛔rane𝔅,f𝔅e×f
29 sigagenss2 ranR=rane𝔅,f𝔅e×franR𝛔rane𝔅,f𝔅e×frane𝔅,f𝔅e×fV𝛔ranR𝛔rane𝔅,f𝔅e×f
30 6 28 10 29 mp3an 𝛔ranR𝛔rane𝔅,f𝔅e×f
31 1 2 3 sxbrsigalem4 𝛔J×tJ=𝛔ranR
32 eqid rane𝔅,f𝔅e×f=rane𝔅,f𝔅e×f
33 32 sxval 𝔅sigAlgebra𝔅sigAlgebra𝔅×s𝔅=𝛔rane𝔅,f𝔅e×f
34 7 7 33 mp2an 𝔅×s𝔅=𝛔rane𝔅,f𝔅e×f
35 30 31 34 3sstr4i 𝛔J×tJ𝔅×s𝔅