Description: The base set for the generator of the Borel sigma-algebra on ( RR X. RR ) is indeed ( RR X. RR ) . (Contributed by Thierry Arnoux, 22-Sep-2017)
Ref | Expression | ||
---|---|---|---|
Assertion | br2base | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brsigasspwrn | |
|
2 | 1 | sseli | |
3 | 2 | elpwid | |
4 | 1 | sseli | |
5 | 4 | elpwid | |
6 | xpss12 | |
|
7 | 3 5 6 | syl2an | |
8 | vex | |
|
9 | vex | |
|
10 | 8 9 | xpex | |
11 | 10 | elpw | |
12 | 7 11 | sylibr | |
13 | 12 | rgen2 | |
14 | eqid | |
|
15 | 14 | rnmposs | |
16 | 13 15 | ax-mp | |
17 | unibrsiga | |
|
18 | brsigarn | |
|
19 | elrnsiga | |
|
20 | unielsiga | |
|
21 | 18 19 20 | mp2b | |
22 | 17 21 | eqeltrri | |
23 | eqid | |
|
24 | xpeq1 | |
|
25 | 24 | eqeq2d | |
26 | xpeq2 | |
|
27 | 26 | eqeq2d | |
28 | 25 27 | rspc2ev | |
29 | 22 22 23 28 | mp3an | |
30 | 14 10 | elrnmpo | |
31 | 29 30 | mpbir | |
32 | elpwuni | |
|
33 | 31 32 | ax-mp | |
34 | 16 33 | mpbi | |