Metamath Proof Explorer


Theorem br2base

Description: The base set for the generator of the Borel sigma-algebra on ( RR X. RR ) is indeed ( RR X. RR ) . (Contributed by Thierry Arnoux, 22-Sep-2017)

Ref Expression
Assertion br2base ranx𝔅,y𝔅x×y=2

Proof

Step Hyp Ref Expression
1 brsigasspwrn 𝔅𝒫
2 1 sseli x𝔅x𝒫
3 2 elpwid x𝔅x
4 1 sseli y𝔅y𝒫
5 4 elpwid y𝔅y
6 xpss12 xyx×y2
7 3 5 6 syl2an x𝔅y𝔅x×y2
8 vex xV
9 vex yV
10 8 9 xpex x×yV
11 10 elpw x×y𝒫2x×y2
12 7 11 sylibr x𝔅y𝔅x×y𝒫2
13 12 rgen2 x𝔅y𝔅x×y𝒫2
14 eqid x𝔅,y𝔅x×y=x𝔅,y𝔅x×y
15 14 rnmposs x𝔅y𝔅x×y𝒫2ranx𝔅,y𝔅x×y𝒫2
16 13 15 ax-mp ranx𝔅,y𝔅x×y𝒫2
17 unibrsiga 𝔅=
18 brsigarn 𝔅sigAlgebra
19 elrnsiga 𝔅sigAlgebra𝔅ransigAlgebra
20 unielsiga 𝔅ransigAlgebra𝔅𝔅
21 18 19 20 mp2b 𝔅𝔅
22 17 21 eqeltrri 𝔅
23 eqid 2=2
24 xpeq1 x=x×y=×y
25 24 eqeq2d x=2=x×y2=×y
26 xpeq2 y=×y=2
27 26 eqeq2d y=2=×y2=2
28 25 27 rspc2ev 𝔅𝔅2=2x𝔅y𝔅2=x×y
29 22 22 23 28 mp3an x𝔅y𝔅2=x×y
30 14 10 elrnmpo 2ranx𝔅,y𝔅x×yx𝔅y𝔅2=x×y
31 29 30 mpbir 2ranx𝔅,y𝔅x×y
32 elpwuni 2ranx𝔅,y𝔅x×yranx𝔅,y𝔅x×y𝒫2ranx𝔅,y𝔅x×y=2
33 31 32 ax-mp ranx𝔅,y𝔅x×y𝒫2ranx𝔅,y𝔅x×y=2
34 16 33 mpbi ranx𝔅,y𝔅x×y=2