Step |
Hyp |
Ref |
Expression |
1 |
|
brsigasspwrn |
|- BrSiga C_ ~P RR |
2 |
1
|
sseli |
|- ( x e. BrSiga -> x e. ~P RR ) |
3 |
2
|
elpwid |
|- ( x e. BrSiga -> x C_ RR ) |
4 |
1
|
sseli |
|- ( y e. BrSiga -> y e. ~P RR ) |
5 |
4
|
elpwid |
|- ( y e. BrSiga -> y C_ RR ) |
6 |
|
xpss12 |
|- ( ( x C_ RR /\ y C_ RR ) -> ( x X. y ) C_ ( RR X. RR ) ) |
7 |
3 5 6
|
syl2an |
|- ( ( x e. BrSiga /\ y e. BrSiga ) -> ( x X. y ) C_ ( RR X. RR ) ) |
8 |
|
vex |
|- x e. _V |
9 |
|
vex |
|- y e. _V |
10 |
8 9
|
xpex |
|- ( x X. y ) e. _V |
11 |
10
|
elpw |
|- ( ( x X. y ) e. ~P ( RR X. RR ) <-> ( x X. y ) C_ ( RR X. RR ) ) |
12 |
7 11
|
sylibr |
|- ( ( x e. BrSiga /\ y e. BrSiga ) -> ( x X. y ) e. ~P ( RR X. RR ) ) |
13 |
12
|
rgen2 |
|- A. x e. BrSiga A. y e. BrSiga ( x X. y ) e. ~P ( RR X. RR ) |
14 |
|
eqid |
|- ( x e. BrSiga , y e. BrSiga |-> ( x X. y ) ) = ( x e. BrSiga , y e. BrSiga |-> ( x X. y ) ) |
15 |
14
|
rnmposs |
|- ( A. x e. BrSiga A. y e. BrSiga ( x X. y ) e. ~P ( RR X. RR ) -> ran ( x e. BrSiga , y e. BrSiga |-> ( x X. y ) ) C_ ~P ( RR X. RR ) ) |
16 |
13 15
|
ax-mp |
|- ran ( x e. BrSiga , y e. BrSiga |-> ( x X. y ) ) C_ ~P ( RR X. RR ) |
17 |
|
unibrsiga |
|- U. BrSiga = RR |
18 |
|
brsigarn |
|- BrSiga e. ( sigAlgebra ` RR ) |
19 |
|
elrnsiga |
|- ( BrSiga e. ( sigAlgebra ` RR ) -> BrSiga e. U. ran sigAlgebra ) |
20 |
|
unielsiga |
|- ( BrSiga e. U. ran sigAlgebra -> U. BrSiga e. BrSiga ) |
21 |
18 19 20
|
mp2b |
|- U. BrSiga e. BrSiga |
22 |
17 21
|
eqeltrri |
|- RR e. BrSiga |
23 |
|
eqid |
|- ( RR X. RR ) = ( RR X. RR ) |
24 |
|
xpeq1 |
|- ( x = RR -> ( x X. y ) = ( RR X. y ) ) |
25 |
24
|
eqeq2d |
|- ( x = RR -> ( ( RR X. RR ) = ( x X. y ) <-> ( RR X. RR ) = ( RR X. y ) ) ) |
26 |
|
xpeq2 |
|- ( y = RR -> ( RR X. y ) = ( RR X. RR ) ) |
27 |
26
|
eqeq2d |
|- ( y = RR -> ( ( RR X. RR ) = ( RR X. y ) <-> ( RR X. RR ) = ( RR X. RR ) ) ) |
28 |
25 27
|
rspc2ev |
|- ( ( RR e. BrSiga /\ RR e. BrSiga /\ ( RR X. RR ) = ( RR X. RR ) ) -> E. x e. BrSiga E. y e. BrSiga ( RR X. RR ) = ( x X. y ) ) |
29 |
22 22 23 28
|
mp3an |
|- E. x e. BrSiga E. y e. BrSiga ( RR X. RR ) = ( x X. y ) |
30 |
14 10
|
elrnmpo |
|- ( ( RR X. RR ) e. ran ( x e. BrSiga , y e. BrSiga |-> ( x X. y ) ) <-> E. x e. BrSiga E. y e. BrSiga ( RR X. RR ) = ( x X. y ) ) |
31 |
29 30
|
mpbir |
|- ( RR X. RR ) e. ran ( x e. BrSiga , y e. BrSiga |-> ( x X. y ) ) |
32 |
|
elpwuni |
|- ( ( RR X. RR ) e. ran ( x e. BrSiga , y e. BrSiga |-> ( x X. y ) ) -> ( ran ( x e. BrSiga , y e. BrSiga |-> ( x X. y ) ) C_ ~P ( RR X. RR ) <-> U. ran ( x e. BrSiga , y e. BrSiga |-> ( x X. y ) ) = ( RR X. RR ) ) ) |
33 |
31 32
|
ax-mp |
|- ( ran ( x e. BrSiga , y e. BrSiga |-> ( x X. y ) ) C_ ~P ( RR X. RR ) <-> U. ran ( x e. BrSiga , y e. BrSiga |-> ( x X. y ) ) = ( RR X. RR ) ) |
34 |
16 33
|
mpbi |
|- U. ran ( x e. BrSiga , y e. BrSiga |-> ( x X. y ) ) = ( RR X. RR ) |