| Step |
Hyp |
Ref |
Expression |
| 1 |
|
brsigasspwrn |
⊢ 𝔅ℝ ⊆ 𝒫 ℝ |
| 2 |
1
|
sseli |
⊢ ( 𝑥 ∈ 𝔅ℝ → 𝑥 ∈ 𝒫 ℝ ) |
| 3 |
2
|
elpwid |
⊢ ( 𝑥 ∈ 𝔅ℝ → 𝑥 ⊆ ℝ ) |
| 4 |
1
|
sseli |
⊢ ( 𝑦 ∈ 𝔅ℝ → 𝑦 ∈ 𝒫 ℝ ) |
| 5 |
4
|
elpwid |
⊢ ( 𝑦 ∈ 𝔅ℝ → 𝑦 ⊆ ℝ ) |
| 6 |
|
xpss12 |
⊢ ( ( 𝑥 ⊆ ℝ ∧ 𝑦 ⊆ ℝ ) → ( 𝑥 × 𝑦 ) ⊆ ( ℝ × ℝ ) ) |
| 7 |
3 5 6
|
syl2an |
⊢ ( ( 𝑥 ∈ 𝔅ℝ ∧ 𝑦 ∈ 𝔅ℝ ) → ( 𝑥 × 𝑦 ) ⊆ ( ℝ × ℝ ) ) |
| 8 |
|
vex |
⊢ 𝑥 ∈ V |
| 9 |
|
vex |
⊢ 𝑦 ∈ V |
| 10 |
8 9
|
xpex |
⊢ ( 𝑥 × 𝑦 ) ∈ V |
| 11 |
10
|
elpw |
⊢ ( ( 𝑥 × 𝑦 ) ∈ 𝒫 ( ℝ × ℝ ) ↔ ( 𝑥 × 𝑦 ) ⊆ ( ℝ × ℝ ) ) |
| 12 |
7 11
|
sylibr |
⊢ ( ( 𝑥 ∈ 𝔅ℝ ∧ 𝑦 ∈ 𝔅ℝ ) → ( 𝑥 × 𝑦 ) ∈ 𝒫 ( ℝ × ℝ ) ) |
| 13 |
12
|
rgen2 |
⊢ ∀ 𝑥 ∈ 𝔅ℝ ∀ 𝑦 ∈ 𝔅ℝ ( 𝑥 × 𝑦 ) ∈ 𝒫 ( ℝ × ℝ ) |
| 14 |
|
eqid |
⊢ ( 𝑥 ∈ 𝔅ℝ , 𝑦 ∈ 𝔅ℝ ↦ ( 𝑥 × 𝑦 ) ) = ( 𝑥 ∈ 𝔅ℝ , 𝑦 ∈ 𝔅ℝ ↦ ( 𝑥 × 𝑦 ) ) |
| 15 |
14
|
rnmposs |
⊢ ( ∀ 𝑥 ∈ 𝔅ℝ ∀ 𝑦 ∈ 𝔅ℝ ( 𝑥 × 𝑦 ) ∈ 𝒫 ( ℝ × ℝ ) → ran ( 𝑥 ∈ 𝔅ℝ , 𝑦 ∈ 𝔅ℝ ↦ ( 𝑥 × 𝑦 ) ) ⊆ 𝒫 ( ℝ × ℝ ) ) |
| 16 |
13 15
|
ax-mp |
⊢ ran ( 𝑥 ∈ 𝔅ℝ , 𝑦 ∈ 𝔅ℝ ↦ ( 𝑥 × 𝑦 ) ) ⊆ 𝒫 ( ℝ × ℝ ) |
| 17 |
|
unibrsiga |
⊢ ∪ 𝔅ℝ = ℝ |
| 18 |
|
brsigarn |
⊢ 𝔅ℝ ∈ ( sigAlgebra ‘ ℝ ) |
| 19 |
|
elrnsiga |
⊢ ( 𝔅ℝ ∈ ( sigAlgebra ‘ ℝ ) → 𝔅ℝ ∈ ∪ ran sigAlgebra ) |
| 20 |
|
unielsiga |
⊢ ( 𝔅ℝ ∈ ∪ ran sigAlgebra → ∪ 𝔅ℝ ∈ 𝔅ℝ ) |
| 21 |
18 19 20
|
mp2b |
⊢ ∪ 𝔅ℝ ∈ 𝔅ℝ |
| 22 |
17 21
|
eqeltrri |
⊢ ℝ ∈ 𝔅ℝ |
| 23 |
|
eqid |
⊢ ( ℝ × ℝ ) = ( ℝ × ℝ ) |
| 24 |
|
xpeq1 |
⊢ ( 𝑥 = ℝ → ( 𝑥 × 𝑦 ) = ( ℝ × 𝑦 ) ) |
| 25 |
24
|
eqeq2d |
⊢ ( 𝑥 = ℝ → ( ( ℝ × ℝ ) = ( 𝑥 × 𝑦 ) ↔ ( ℝ × ℝ ) = ( ℝ × 𝑦 ) ) ) |
| 26 |
|
xpeq2 |
⊢ ( 𝑦 = ℝ → ( ℝ × 𝑦 ) = ( ℝ × ℝ ) ) |
| 27 |
26
|
eqeq2d |
⊢ ( 𝑦 = ℝ → ( ( ℝ × ℝ ) = ( ℝ × 𝑦 ) ↔ ( ℝ × ℝ ) = ( ℝ × ℝ ) ) ) |
| 28 |
25 27
|
rspc2ev |
⊢ ( ( ℝ ∈ 𝔅ℝ ∧ ℝ ∈ 𝔅ℝ ∧ ( ℝ × ℝ ) = ( ℝ × ℝ ) ) → ∃ 𝑥 ∈ 𝔅ℝ ∃ 𝑦 ∈ 𝔅ℝ ( ℝ × ℝ ) = ( 𝑥 × 𝑦 ) ) |
| 29 |
22 22 23 28
|
mp3an |
⊢ ∃ 𝑥 ∈ 𝔅ℝ ∃ 𝑦 ∈ 𝔅ℝ ( ℝ × ℝ ) = ( 𝑥 × 𝑦 ) |
| 30 |
14 10
|
elrnmpo |
⊢ ( ( ℝ × ℝ ) ∈ ran ( 𝑥 ∈ 𝔅ℝ , 𝑦 ∈ 𝔅ℝ ↦ ( 𝑥 × 𝑦 ) ) ↔ ∃ 𝑥 ∈ 𝔅ℝ ∃ 𝑦 ∈ 𝔅ℝ ( ℝ × ℝ ) = ( 𝑥 × 𝑦 ) ) |
| 31 |
29 30
|
mpbir |
⊢ ( ℝ × ℝ ) ∈ ran ( 𝑥 ∈ 𝔅ℝ , 𝑦 ∈ 𝔅ℝ ↦ ( 𝑥 × 𝑦 ) ) |
| 32 |
|
elpwuni |
⊢ ( ( ℝ × ℝ ) ∈ ran ( 𝑥 ∈ 𝔅ℝ , 𝑦 ∈ 𝔅ℝ ↦ ( 𝑥 × 𝑦 ) ) → ( ran ( 𝑥 ∈ 𝔅ℝ , 𝑦 ∈ 𝔅ℝ ↦ ( 𝑥 × 𝑦 ) ) ⊆ 𝒫 ( ℝ × ℝ ) ↔ ∪ ran ( 𝑥 ∈ 𝔅ℝ , 𝑦 ∈ 𝔅ℝ ↦ ( 𝑥 × 𝑦 ) ) = ( ℝ × ℝ ) ) ) |
| 33 |
31 32
|
ax-mp |
⊢ ( ran ( 𝑥 ∈ 𝔅ℝ , 𝑦 ∈ 𝔅ℝ ↦ ( 𝑥 × 𝑦 ) ) ⊆ 𝒫 ( ℝ × ℝ ) ↔ ∪ ran ( 𝑥 ∈ 𝔅ℝ , 𝑦 ∈ 𝔅ℝ ↦ ( 𝑥 × 𝑦 ) ) = ( ℝ × ℝ ) ) |
| 34 |
16 33
|
mpbi |
⊢ ∪ ran ( 𝑥 ∈ 𝔅ℝ , 𝑦 ∈ 𝔅ℝ ↦ ( 𝑥 × 𝑦 ) ) = ( ℝ × ℝ ) |