Metamath Proof Explorer


Theorem br2base

Description: The base set for the generator of the Borel sigma-algebra on ( RR X. RR ) is indeed ( RR X. RR ) . (Contributed by Thierry Arnoux, 22-Sep-2017)

Ref Expression
Assertion br2base ran ( 𝑥 ∈ 𝔅 , 𝑦 ∈ 𝔅 ↦ ( 𝑥 × 𝑦 ) ) = ( ℝ × ℝ )

Proof

Step Hyp Ref Expression
1 brsigasspwrn 𝔅 ⊆ 𝒫 ℝ
2 1 sseli ( 𝑥 ∈ 𝔅𝑥 ∈ 𝒫 ℝ )
3 2 elpwid ( 𝑥 ∈ 𝔅𝑥 ⊆ ℝ )
4 1 sseli ( 𝑦 ∈ 𝔅𝑦 ∈ 𝒫 ℝ )
5 4 elpwid ( 𝑦 ∈ 𝔅𝑦 ⊆ ℝ )
6 xpss12 ( ( 𝑥 ⊆ ℝ ∧ 𝑦 ⊆ ℝ ) → ( 𝑥 × 𝑦 ) ⊆ ( ℝ × ℝ ) )
7 3 5 6 syl2an ( ( 𝑥 ∈ 𝔅𝑦 ∈ 𝔅 ) → ( 𝑥 × 𝑦 ) ⊆ ( ℝ × ℝ ) )
8 vex 𝑥 ∈ V
9 vex 𝑦 ∈ V
10 8 9 xpex ( 𝑥 × 𝑦 ) ∈ V
11 10 elpw ( ( 𝑥 × 𝑦 ) ∈ 𝒫 ( ℝ × ℝ ) ↔ ( 𝑥 × 𝑦 ) ⊆ ( ℝ × ℝ ) )
12 7 11 sylibr ( ( 𝑥 ∈ 𝔅𝑦 ∈ 𝔅 ) → ( 𝑥 × 𝑦 ) ∈ 𝒫 ( ℝ × ℝ ) )
13 12 rgen2 𝑥 ∈ 𝔅𝑦 ∈ 𝔅 ( 𝑥 × 𝑦 ) ∈ 𝒫 ( ℝ × ℝ )
14 eqid ( 𝑥 ∈ 𝔅 , 𝑦 ∈ 𝔅 ↦ ( 𝑥 × 𝑦 ) ) = ( 𝑥 ∈ 𝔅 , 𝑦 ∈ 𝔅 ↦ ( 𝑥 × 𝑦 ) )
15 14 rnmposs ( ∀ 𝑥 ∈ 𝔅𝑦 ∈ 𝔅 ( 𝑥 × 𝑦 ) ∈ 𝒫 ( ℝ × ℝ ) → ran ( 𝑥 ∈ 𝔅 , 𝑦 ∈ 𝔅 ↦ ( 𝑥 × 𝑦 ) ) ⊆ 𝒫 ( ℝ × ℝ ) )
16 13 15 ax-mp ran ( 𝑥 ∈ 𝔅 , 𝑦 ∈ 𝔅 ↦ ( 𝑥 × 𝑦 ) ) ⊆ 𝒫 ( ℝ × ℝ )
17 unibrsiga 𝔅 = ℝ
18 brsigarn 𝔅 ∈ ( sigAlgebra ‘ ℝ )
19 elrnsiga ( 𝔅 ∈ ( sigAlgebra ‘ ℝ ) → 𝔅 ran sigAlgebra )
20 unielsiga ( 𝔅 ran sigAlgebra → 𝔅 ∈ 𝔅 )
21 18 19 20 mp2b 𝔅 ∈ 𝔅
22 17 21 eqeltrri ℝ ∈ 𝔅
23 eqid ( ℝ × ℝ ) = ( ℝ × ℝ )
24 xpeq1 ( 𝑥 = ℝ → ( 𝑥 × 𝑦 ) = ( ℝ × 𝑦 ) )
25 24 eqeq2d ( 𝑥 = ℝ → ( ( ℝ × ℝ ) = ( 𝑥 × 𝑦 ) ↔ ( ℝ × ℝ ) = ( ℝ × 𝑦 ) ) )
26 xpeq2 ( 𝑦 = ℝ → ( ℝ × 𝑦 ) = ( ℝ × ℝ ) )
27 26 eqeq2d ( 𝑦 = ℝ → ( ( ℝ × ℝ ) = ( ℝ × 𝑦 ) ↔ ( ℝ × ℝ ) = ( ℝ × ℝ ) ) )
28 25 27 rspc2ev ( ( ℝ ∈ 𝔅 ∧ ℝ ∈ 𝔅 ∧ ( ℝ × ℝ ) = ( ℝ × ℝ ) ) → ∃ 𝑥 ∈ 𝔅𝑦 ∈ 𝔅 ( ℝ × ℝ ) = ( 𝑥 × 𝑦 ) )
29 22 22 23 28 mp3an 𝑥 ∈ 𝔅𝑦 ∈ 𝔅 ( ℝ × ℝ ) = ( 𝑥 × 𝑦 )
30 14 10 elrnmpo ( ( ℝ × ℝ ) ∈ ran ( 𝑥 ∈ 𝔅 , 𝑦 ∈ 𝔅 ↦ ( 𝑥 × 𝑦 ) ) ↔ ∃ 𝑥 ∈ 𝔅𝑦 ∈ 𝔅 ( ℝ × ℝ ) = ( 𝑥 × 𝑦 ) )
31 29 30 mpbir ( ℝ × ℝ ) ∈ ran ( 𝑥 ∈ 𝔅 , 𝑦 ∈ 𝔅 ↦ ( 𝑥 × 𝑦 ) )
32 elpwuni ( ( ℝ × ℝ ) ∈ ran ( 𝑥 ∈ 𝔅 , 𝑦 ∈ 𝔅 ↦ ( 𝑥 × 𝑦 ) ) → ( ran ( 𝑥 ∈ 𝔅 , 𝑦 ∈ 𝔅 ↦ ( 𝑥 × 𝑦 ) ) ⊆ 𝒫 ( ℝ × ℝ ) ↔ ran ( 𝑥 ∈ 𝔅 , 𝑦 ∈ 𝔅 ↦ ( 𝑥 × 𝑦 ) ) = ( ℝ × ℝ ) ) )
33 31 32 ax-mp ( ran ( 𝑥 ∈ 𝔅 , 𝑦 ∈ 𝔅 ↦ ( 𝑥 × 𝑦 ) ) ⊆ 𝒫 ( ℝ × ℝ ) ↔ ran ( 𝑥 ∈ 𝔅 , 𝑦 ∈ 𝔅 ↦ ( 𝑥 × 𝑦 ) ) = ( ℝ × ℝ ) )
34 16 33 mpbi ran ( 𝑥 ∈ 𝔅 , 𝑦 ∈ 𝔅 ↦ ( 𝑥 × 𝑦 ) ) = ( ℝ × ℝ )