| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sxbrsiga.0 |
|- J = ( topGen ` ran (,) ) |
| 2 |
|
dya2ioc.1 |
|- I = ( x e. ZZ , n e. ZZ |-> ( ( x / ( 2 ^ n ) ) [,) ( ( x + 1 ) / ( 2 ^ n ) ) ) ) |
| 3 |
|
dya2ioc.2 |
|- R = ( u e. ran I , v e. ran I |-> ( u X. v ) ) |
| 4 |
1 2 3
|
dya2iocucvr |
|- U. ran R = ( RR X. RR ) |
| 5 |
|
br2base |
|- U. ran ( e e. BrSiga , f e. BrSiga |-> ( e X. f ) ) = ( RR X. RR ) |
| 6 |
4 5
|
eqtr4i |
|- U. ran R = U. ran ( e e. BrSiga , f e. BrSiga |-> ( e X. f ) ) |
| 7 |
|
brsigarn |
|- BrSiga e. ( sigAlgebra ` RR ) |
| 8 |
7
|
elexi |
|- BrSiga e. _V |
| 9 |
8 8
|
mpoex |
|- ( e e. BrSiga , f e. BrSiga |-> ( e X. f ) ) e. _V |
| 10 |
9
|
rnex |
|- ran ( e e. BrSiga , f e. BrSiga |-> ( e X. f ) ) e. _V |
| 11 |
1 2
|
dya2icobrsiga |
|- ran I C_ BrSiga |
| 12 |
11
|
sseli |
|- ( u e. ran I -> u e. BrSiga ) |
| 13 |
11
|
sseli |
|- ( v e. ran I -> v e. BrSiga ) |
| 14 |
12 13
|
anim12i |
|- ( ( u e. ran I /\ v e. ran I ) -> ( u e. BrSiga /\ v e. BrSiga ) ) |
| 15 |
14
|
anim1i |
|- ( ( ( u e. ran I /\ v e. ran I ) /\ g = ( u X. v ) ) -> ( ( u e. BrSiga /\ v e. BrSiga ) /\ g = ( u X. v ) ) ) |
| 16 |
15
|
ssoprab2i |
|- { <. <. u , v >. , g >. | ( ( u e. ran I /\ v e. ran I ) /\ g = ( u X. v ) ) } C_ { <. <. u , v >. , g >. | ( ( u e. BrSiga /\ v e. BrSiga ) /\ g = ( u X. v ) ) } |
| 17 |
|
df-mpo |
|- ( u e. ran I , v e. ran I |-> ( u X. v ) ) = { <. <. u , v >. , g >. | ( ( u e. ran I /\ v e. ran I ) /\ g = ( u X. v ) ) } |
| 18 |
3 17
|
eqtri |
|- R = { <. <. u , v >. , g >. | ( ( u e. ran I /\ v e. ran I ) /\ g = ( u X. v ) ) } |
| 19 |
|
xpeq1 |
|- ( e = u -> ( e X. f ) = ( u X. f ) ) |
| 20 |
|
xpeq2 |
|- ( f = v -> ( u X. f ) = ( u X. v ) ) |
| 21 |
19 20
|
cbvmpov |
|- ( e e. BrSiga , f e. BrSiga |-> ( e X. f ) ) = ( u e. BrSiga , v e. BrSiga |-> ( u X. v ) ) |
| 22 |
|
df-mpo |
|- ( u e. BrSiga , v e. BrSiga |-> ( u X. v ) ) = { <. <. u , v >. , g >. | ( ( u e. BrSiga /\ v e. BrSiga ) /\ g = ( u X. v ) ) } |
| 23 |
21 22
|
eqtri |
|- ( e e. BrSiga , f e. BrSiga |-> ( e X. f ) ) = { <. <. u , v >. , g >. | ( ( u e. BrSiga /\ v e. BrSiga ) /\ g = ( u X. v ) ) } |
| 24 |
16 18 23
|
3sstr4i |
|- R C_ ( e e. BrSiga , f e. BrSiga |-> ( e X. f ) ) |
| 25 |
|
rnss |
|- ( R C_ ( e e. BrSiga , f e. BrSiga |-> ( e X. f ) ) -> ran R C_ ran ( e e. BrSiga , f e. BrSiga |-> ( e X. f ) ) ) |
| 26 |
24 25
|
ax-mp |
|- ran R C_ ran ( e e. BrSiga , f e. BrSiga |-> ( e X. f ) ) |
| 27 |
|
sssigagen2 |
|- ( ( ran ( e e. BrSiga , f e. BrSiga |-> ( e X. f ) ) e. _V /\ ran R C_ ran ( e e. BrSiga , f e. BrSiga |-> ( e X. f ) ) ) -> ran R C_ ( sigaGen ` ran ( e e. BrSiga , f e. BrSiga |-> ( e X. f ) ) ) ) |
| 28 |
10 26 27
|
mp2an |
|- ran R C_ ( sigaGen ` ran ( e e. BrSiga , f e. BrSiga |-> ( e X. f ) ) ) |
| 29 |
|
sigagenss2 |
|- ( ( U. ran R = U. ran ( e e. BrSiga , f e. BrSiga |-> ( e X. f ) ) /\ ran R C_ ( sigaGen ` ran ( e e. BrSiga , f e. BrSiga |-> ( e X. f ) ) ) /\ ran ( e e. BrSiga , f e. BrSiga |-> ( e X. f ) ) e. _V ) -> ( sigaGen ` ran R ) C_ ( sigaGen ` ran ( e e. BrSiga , f e. BrSiga |-> ( e X. f ) ) ) ) |
| 30 |
6 28 10 29
|
mp3an |
|- ( sigaGen ` ran R ) C_ ( sigaGen ` ran ( e e. BrSiga , f e. BrSiga |-> ( e X. f ) ) ) |
| 31 |
1 2 3
|
sxbrsigalem4 |
|- ( sigaGen ` ( J tX J ) ) = ( sigaGen ` ran R ) |
| 32 |
|
eqid |
|- ran ( e e. BrSiga , f e. BrSiga |-> ( e X. f ) ) = ran ( e e. BrSiga , f e. BrSiga |-> ( e X. f ) ) |
| 33 |
32
|
sxval |
|- ( ( BrSiga e. ( sigAlgebra ` RR ) /\ BrSiga e. ( sigAlgebra ` RR ) ) -> ( BrSiga sX BrSiga ) = ( sigaGen ` ran ( e e. BrSiga , f e. BrSiga |-> ( e X. f ) ) ) ) |
| 34 |
7 7 33
|
mp2an |
|- ( BrSiga sX BrSiga ) = ( sigaGen ` ran ( e e. BrSiga , f e. BrSiga |-> ( e X. f ) ) ) |
| 35 |
30 31 34
|
3sstr4i |
|- ( sigaGen ` ( J tX J ) ) C_ ( BrSiga sX BrSiga ) |