Step |
Hyp |
Ref |
Expression |
1 |
|
sxbrsiga.0 |
|- J = ( topGen ` ran (,) ) |
2 |
|
brsigarn |
|- BrSiga e. ( sigAlgebra ` RR ) |
3 |
|
eqid |
|- ran ( e e. BrSiga , f e. BrSiga |-> ( e X. f ) ) = ran ( e e. BrSiga , f e. BrSiga |-> ( e X. f ) ) |
4 |
3
|
sxval |
|- ( ( BrSiga e. ( sigAlgebra ` RR ) /\ BrSiga e. ( sigAlgebra ` RR ) ) -> ( BrSiga sX BrSiga ) = ( sigaGen ` ran ( e e. BrSiga , f e. BrSiga |-> ( e X. f ) ) ) ) |
5 |
2 2 4
|
mp2an |
|- ( BrSiga sX BrSiga ) = ( sigaGen ` ran ( e e. BrSiga , f e. BrSiga |-> ( e X. f ) ) ) |
6 |
|
br2base |
|- U. ran ( e e. BrSiga , f e. BrSiga |-> ( e X. f ) ) = ( RR X. RR ) |
7 |
1
|
tpr2uni |
|- U. ( J tX J ) = ( RR X. RR ) |
8 |
6 7
|
eqtr4i |
|- U. ran ( e e. BrSiga , f e. BrSiga |-> ( e X. f ) ) = U. ( J tX J ) |
9 |
|
brsigasspwrn |
|- BrSiga C_ ~P RR |
10 |
9
|
sseli |
|- ( e e. BrSiga -> e e. ~P RR ) |
11 |
10
|
elpwid |
|- ( e e. BrSiga -> e C_ RR ) |
12 |
9
|
sseli |
|- ( f e. BrSiga -> f e. ~P RR ) |
13 |
12
|
elpwid |
|- ( f e. BrSiga -> f C_ RR ) |
14 |
|
xpinpreima2 |
|- ( ( e C_ RR /\ f C_ RR ) -> ( e X. f ) = ( ( `' ( 1st |` ( RR X. RR ) ) " e ) i^i ( `' ( 2nd |` ( RR X. RR ) ) " f ) ) ) |
15 |
11 13 14
|
syl2an |
|- ( ( e e. BrSiga /\ f e. BrSiga ) -> ( e X. f ) = ( ( `' ( 1st |` ( RR X. RR ) ) " e ) i^i ( `' ( 2nd |` ( RR X. RR ) ) " f ) ) ) |
16 |
1
|
tpr2tp |
|- ( J tX J ) e. ( TopOn ` ( RR X. RR ) ) |
17 |
|
sigagensiga |
|- ( ( J tX J ) e. ( TopOn ` ( RR X. RR ) ) -> ( sigaGen ` ( J tX J ) ) e. ( sigAlgebra ` U. ( J tX J ) ) ) |
18 |
16 17
|
ax-mp |
|- ( sigaGen ` ( J tX J ) ) e. ( sigAlgebra ` U. ( J tX J ) ) |
19 |
|
elrnsiga |
|- ( ( sigaGen ` ( J tX J ) ) e. ( sigAlgebra ` U. ( J tX J ) ) -> ( sigaGen ` ( J tX J ) ) e. U. ran sigAlgebra ) |
20 |
18 19
|
mp1i |
|- ( ( e e. BrSiga /\ f e. BrSiga ) -> ( sigaGen ` ( J tX J ) ) e. U. ran sigAlgebra ) |
21 |
16
|
a1i |
|- ( e e. BrSiga -> ( J tX J ) e. ( TopOn ` ( RR X. RR ) ) ) |
22 |
21
|
sgsiga |
|- ( e e. BrSiga -> ( sigaGen ` ( J tX J ) ) e. U. ran sigAlgebra ) |
23 |
|
elrnsiga |
|- ( BrSiga e. ( sigAlgebra ` RR ) -> BrSiga e. U. ran sigAlgebra ) |
24 |
2 23
|
mp1i |
|- ( e e. BrSiga -> BrSiga e. U. ran sigAlgebra ) |
25 |
|
retopon |
|- ( topGen ` ran (,) ) e. ( TopOn ` RR ) |
26 |
1 25
|
eqeltri |
|- J e. ( TopOn ` RR ) |
27 |
|
tx1cn |
|- ( ( J e. ( TopOn ` RR ) /\ J e. ( TopOn ` RR ) ) -> ( 1st |` ( RR X. RR ) ) e. ( ( J tX J ) Cn J ) ) |
28 |
26 26 27
|
mp2an |
|- ( 1st |` ( RR X. RR ) ) e. ( ( J tX J ) Cn J ) |
29 |
28
|
a1i |
|- ( e e. BrSiga -> ( 1st |` ( RR X. RR ) ) e. ( ( J tX J ) Cn J ) ) |
30 |
|
eqidd |
|- ( e e. BrSiga -> ( sigaGen ` ( J tX J ) ) = ( sigaGen ` ( J tX J ) ) ) |
31 |
|
df-brsiga |
|- BrSiga = ( sigaGen ` ( topGen ` ran (,) ) ) |
32 |
1
|
fveq2i |
|- ( sigaGen ` J ) = ( sigaGen ` ( topGen ` ran (,) ) ) |
33 |
31 32
|
eqtr4i |
|- BrSiga = ( sigaGen ` J ) |
34 |
33
|
a1i |
|- ( e e. BrSiga -> BrSiga = ( sigaGen ` J ) ) |
35 |
29 30 34
|
cnmbfm |
|- ( e e. BrSiga -> ( 1st |` ( RR X. RR ) ) e. ( ( sigaGen ` ( J tX J ) ) MblFnM BrSiga ) ) |
36 |
|
id |
|- ( e e. BrSiga -> e e. BrSiga ) |
37 |
22 24 35 36
|
mbfmcnvima |
|- ( e e. BrSiga -> ( `' ( 1st |` ( RR X. RR ) ) " e ) e. ( sigaGen ` ( J tX J ) ) ) |
38 |
37
|
adantr |
|- ( ( e e. BrSiga /\ f e. BrSiga ) -> ( `' ( 1st |` ( RR X. RR ) ) " e ) e. ( sigaGen ` ( J tX J ) ) ) |
39 |
16
|
a1i |
|- ( f e. BrSiga -> ( J tX J ) e. ( TopOn ` ( RR X. RR ) ) ) |
40 |
39
|
sgsiga |
|- ( f e. BrSiga -> ( sigaGen ` ( J tX J ) ) e. U. ran sigAlgebra ) |
41 |
2 23
|
mp1i |
|- ( f e. BrSiga -> BrSiga e. U. ran sigAlgebra ) |
42 |
|
tx2cn |
|- ( ( J e. ( TopOn ` RR ) /\ J e. ( TopOn ` RR ) ) -> ( 2nd |` ( RR X. RR ) ) e. ( ( J tX J ) Cn J ) ) |
43 |
26 26 42
|
mp2an |
|- ( 2nd |` ( RR X. RR ) ) e. ( ( J tX J ) Cn J ) |
44 |
43
|
a1i |
|- ( f e. BrSiga -> ( 2nd |` ( RR X. RR ) ) e. ( ( J tX J ) Cn J ) ) |
45 |
|
eqidd |
|- ( f e. BrSiga -> ( sigaGen ` ( J tX J ) ) = ( sigaGen ` ( J tX J ) ) ) |
46 |
33
|
a1i |
|- ( f e. BrSiga -> BrSiga = ( sigaGen ` J ) ) |
47 |
44 45 46
|
cnmbfm |
|- ( f e. BrSiga -> ( 2nd |` ( RR X. RR ) ) e. ( ( sigaGen ` ( J tX J ) ) MblFnM BrSiga ) ) |
48 |
|
id |
|- ( f e. BrSiga -> f e. BrSiga ) |
49 |
40 41 47 48
|
mbfmcnvima |
|- ( f e. BrSiga -> ( `' ( 2nd |` ( RR X. RR ) ) " f ) e. ( sigaGen ` ( J tX J ) ) ) |
50 |
49
|
adantl |
|- ( ( e e. BrSiga /\ f e. BrSiga ) -> ( `' ( 2nd |` ( RR X. RR ) ) " f ) e. ( sigaGen ` ( J tX J ) ) ) |
51 |
|
inelsiga |
|- ( ( ( sigaGen ` ( J tX J ) ) e. U. ran sigAlgebra /\ ( `' ( 1st |` ( RR X. RR ) ) " e ) e. ( sigaGen ` ( J tX J ) ) /\ ( `' ( 2nd |` ( RR X. RR ) ) " f ) e. ( sigaGen ` ( J tX J ) ) ) -> ( ( `' ( 1st |` ( RR X. RR ) ) " e ) i^i ( `' ( 2nd |` ( RR X. RR ) ) " f ) ) e. ( sigaGen ` ( J tX J ) ) ) |
52 |
20 38 50 51
|
syl3anc |
|- ( ( e e. BrSiga /\ f e. BrSiga ) -> ( ( `' ( 1st |` ( RR X. RR ) ) " e ) i^i ( `' ( 2nd |` ( RR X. RR ) ) " f ) ) e. ( sigaGen ` ( J tX J ) ) ) |
53 |
15 52
|
eqeltrd |
|- ( ( e e. BrSiga /\ f e. BrSiga ) -> ( e X. f ) e. ( sigaGen ` ( J tX J ) ) ) |
54 |
53
|
rgen2 |
|- A. e e. BrSiga A. f e. BrSiga ( e X. f ) e. ( sigaGen ` ( J tX J ) ) |
55 |
|
eqid |
|- ( e e. BrSiga , f e. BrSiga |-> ( e X. f ) ) = ( e e. BrSiga , f e. BrSiga |-> ( e X. f ) ) |
56 |
55
|
rnmposs |
|- ( A. e e. BrSiga A. f e. BrSiga ( e X. f ) e. ( sigaGen ` ( J tX J ) ) -> ran ( e e. BrSiga , f e. BrSiga |-> ( e X. f ) ) C_ ( sigaGen ` ( J tX J ) ) ) |
57 |
54 56
|
ax-mp |
|- ran ( e e. BrSiga , f e. BrSiga |-> ( e X. f ) ) C_ ( sigaGen ` ( J tX J ) ) |
58 |
|
sigagenss2 |
|- ( ( U. ran ( e e. BrSiga , f e. BrSiga |-> ( e X. f ) ) = U. ( J tX J ) /\ ran ( e e. BrSiga , f e. BrSiga |-> ( e X. f ) ) C_ ( sigaGen ` ( J tX J ) ) /\ ( J tX J ) e. ( TopOn ` ( RR X. RR ) ) ) -> ( sigaGen ` ran ( e e. BrSiga , f e. BrSiga |-> ( e X. f ) ) ) C_ ( sigaGen ` ( J tX J ) ) ) |
59 |
8 57 16 58
|
mp3an |
|- ( sigaGen ` ran ( e e. BrSiga , f e. BrSiga |-> ( e X. f ) ) ) C_ ( sigaGen ` ( J tX J ) ) |
60 |
5 59
|
eqsstri |
|- ( BrSiga sX BrSiga ) C_ ( sigaGen ` ( J tX J ) ) |
61 |
1
|
sxbrsigalem6 |
|- ( sigaGen ` ( J tX J ) ) C_ ( BrSiga sX BrSiga ) |
62 |
60 61
|
eqssi |
|- ( BrSiga sX BrSiga ) = ( sigaGen ` ( J tX J ) ) |