Step |
Hyp |
Ref |
Expression |
1 |
|
sxbrsiga.0 |
|- J = ( topGen ` ran (,) ) |
2 |
|
oveq1 |
|- ( a = x -> ( a / ( 2 ^ m ) ) = ( x / ( 2 ^ m ) ) ) |
3 |
|
oveq1 |
|- ( a = x -> ( a + 1 ) = ( x + 1 ) ) |
4 |
3
|
oveq1d |
|- ( a = x -> ( ( a + 1 ) / ( 2 ^ m ) ) = ( ( x + 1 ) / ( 2 ^ m ) ) ) |
5 |
2 4
|
oveq12d |
|- ( a = x -> ( ( a / ( 2 ^ m ) ) [,) ( ( a + 1 ) / ( 2 ^ m ) ) ) = ( ( x / ( 2 ^ m ) ) [,) ( ( x + 1 ) / ( 2 ^ m ) ) ) ) |
6 |
|
oveq2 |
|- ( m = n -> ( 2 ^ m ) = ( 2 ^ n ) ) |
7 |
6
|
oveq2d |
|- ( m = n -> ( x / ( 2 ^ m ) ) = ( x / ( 2 ^ n ) ) ) |
8 |
6
|
oveq2d |
|- ( m = n -> ( ( x + 1 ) / ( 2 ^ m ) ) = ( ( x + 1 ) / ( 2 ^ n ) ) ) |
9 |
7 8
|
oveq12d |
|- ( m = n -> ( ( x / ( 2 ^ m ) ) [,) ( ( x + 1 ) / ( 2 ^ m ) ) ) = ( ( x / ( 2 ^ n ) ) [,) ( ( x + 1 ) / ( 2 ^ n ) ) ) ) |
10 |
5 9
|
cbvmpov |
|- ( a e. ZZ , m e. ZZ |-> ( ( a / ( 2 ^ m ) ) [,) ( ( a + 1 ) / ( 2 ^ m ) ) ) ) = ( x e. ZZ , n e. ZZ |-> ( ( x / ( 2 ^ n ) ) [,) ( ( x + 1 ) / ( 2 ^ n ) ) ) ) |
11 |
|
eqid |
|- ( u e. ran ( a e. ZZ , m e. ZZ |-> ( ( a / ( 2 ^ m ) ) [,) ( ( a + 1 ) / ( 2 ^ m ) ) ) ) , v e. ran ( a e. ZZ , m e. ZZ |-> ( ( a / ( 2 ^ m ) ) [,) ( ( a + 1 ) / ( 2 ^ m ) ) ) ) |-> ( u X. v ) ) = ( u e. ran ( a e. ZZ , m e. ZZ |-> ( ( a / ( 2 ^ m ) ) [,) ( ( a + 1 ) / ( 2 ^ m ) ) ) ) , v e. ran ( a e. ZZ , m e. ZZ |-> ( ( a / ( 2 ^ m ) ) [,) ( ( a + 1 ) / ( 2 ^ m ) ) ) ) |-> ( u X. v ) ) |
12 |
1 10 11
|
sxbrsigalem5 |
|- ( sigaGen ` ( J tX J ) ) C_ ( BrSiga sX BrSiga ) |