| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sxbrsiga.0 |
|- J = ( topGen ` ran (,) ) |
| 2 |
|
dya2ioc.1 |
|- I = ( x e. ZZ , n e. ZZ |-> ( ( x / ( 2 ^ n ) ) [,) ( ( x + 1 ) / ( 2 ^ n ) ) ) ) |
| 3 |
|
dya2ioc.2 |
|- R = ( u e. ran I , v e. ran I |-> ( u X. v ) ) |
| 4 |
1 2 3
|
sxbrsigalem1 |
|- ( sigaGen ` ( J tX J ) ) C_ ( sigaGen ` ran R ) |
| 5 |
1 2 3
|
sxbrsigalem2 |
|- ( sigaGen ` ran R ) C_ ( sigaGen ` ( ran ( e e. RR |-> ( ( e [,) +oo ) X. RR ) ) u. ran ( f e. RR |-> ( RR X. ( f [,) +oo ) ) ) ) ) |
| 6 |
1
|
sxbrsigalem3 |
|- ( sigaGen ` ( ran ( e e. RR |-> ( ( e [,) +oo ) X. RR ) ) u. ran ( f e. RR |-> ( RR X. ( f [,) +oo ) ) ) ) ) C_ ( sigaGen ` ( Clsd ` ( J tX J ) ) ) |
| 7 |
5 6
|
sstri |
|- ( sigaGen ` ran R ) C_ ( sigaGen ` ( Clsd ` ( J tX J ) ) ) |
| 8 |
1
|
tpr2tp |
|- ( J tX J ) e. ( TopOn ` ( RR X. RR ) ) |
| 9 |
8
|
topontopi |
|- ( J tX J ) e. Top |
| 10 |
|
eqid |
|- U. ( J tX J ) = U. ( J tX J ) |
| 11 |
9 10
|
unicls |
|- U. ( Clsd ` ( J tX J ) ) = U. ( J tX J ) |
| 12 |
|
cldssbrsiga |
|- ( ( J tX J ) e. Top -> ( Clsd ` ( J tX J ) ) C_ ( sigaGen ` ( J tX J ) ) ) |
| 13 |
9 12
|
ax-mp |
|- ( Clsd ` ( J tX J ) ) C_ ( sigaGen ` ( J tX J ) ) |
| 14 |
|
sigagenss2 |
|- ( ( U. ( Clsd ` ( J tX J ) ) = U. ( J tX J ) /\ ( Clsd ` ( J tX J ) ) C_ ( sigaGen ` ( J tX J ) ) /\ ( J tX J ) e. Top ) -> ( sigaGen ` ( Clsd ` ( J tX J ) ) ) C_ ( sigaGen ` ( J tX J ) ) ) |
| 15 |
11 13 9 14
|
mp3an |
|- ( sigaGen ` ( Clsd ` ( J tX J ) ) ) C_ ( sigaGen ` ( J tX J ) ) |
| 16 |
7 15
|
sstri |
|- ( sigaGen ` ran R ) C_ ( sigaGen ` ( J tX J ) ) |
| 17 |
4 16
|
eqssi |
|- ( sigaGen ` ( J tX J ) ) = ( sigaGen ` ran R ) |