Step |
Hyp |
Ref |
Expression |
1 |
|
2rp |
⊢ 2 ∈ ℝ+ |
2 |
|
pirp |
⊢ π ∈ ℝ+ |
3 |
|
rpmulcl |
⊢ ( ( 2 ∈ ℝ+ ∧ π ∈ ℝ+ ) → ( 2 · π ) ∈ ℝ+ ) |
4 |
1 2 3
|
mp2an |
⊢ ( 2 · π ) ∈ ℝ+ |
5 |
|
rpre |
⊢ ( ( 2 · π ) ∈ ℝ+ → ( 2 · π ) ∈ ℝ ) |
6 |
4 5
|
ax-mp |
⊢ ( 2 · π ) ∈ ℝ |
7 |
6
|
recni |
⊢ ( 2 · π ) ∈ ℂ |
8 |
|
rpgt0 |
⊢ ( ( 2 · π ) ∈ ℝ+ → 0 < ( 2 · π ) ) |
9 |
4 8
|
ax-mp |
⊢ 0 < ( 2 · π ) |
10 |
6 9
|
gt0ne0ii |
⊢ ( 2 · π ) ≠ 0 |
11 |
7 10
|
dividi |
⊢ ( ( 2 · π ) / ( 2 · π ) ) = 1 |
12 |
|
rpdivcl |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ ( 2 · π ) ∈ ℝ+ ) → ( 𝐴 / ( 2 · π ) ) ∈ ℝ+ ) |
13 |
12
|
rpgt0d |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ ( 2 · π ) ∈ ℝ+ ) → 0 < ( 𝐴 / ( 2 · π ) ) ) |
14 |
4 13
|
mpan2 |
⊢ ( 𝐴 ∈ ℝ+ → 0 < ( 𝐴 / ( 2 · π ) ) ) |
15 |
14
|
adantr |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ ( cos ‘ 𝐴 ) = 1 ) → 0 < ( 𝐴 / ( 2 · π ) ) ) |
16 |
|
rpcn |
⊢ ( 𝐴 ∈ ℝ+ → 𝐴 ∈ ℂ ) |
17 |
|
coseq1 |
⊢ ( 𝐴 ∈ ℂ → ( ( cos ‘ 𝐴 ) = 1 ↔ ( 𝐴 / ( 2 · π ) ) ∈ ℤ ) ) |
18 |
16 17
|
syl |
⊢ ( 𝐴 ∈ ℝ+ → ( ( cos ‘ 𝐴 ) = 1 ↔ ( 𝐴 / ( 2 · π ) ) ∈ ℤ ) ) |
19 |
18
|
biimpa |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ ( cos ‘ 𝐴 ) = 1 ) → ( 𝐴 / ( 2 · π ) ) ∈ ℤ ) |
20 |
|
zgt0ge1 |
⊢ ( ( 𝐴 / ( 2 · π ) ) ∈ ℤ → ( 0 < ( 𝐴 / ( 2 · π ) ) ↔ 1 ≤ ( 𝐴 / ( 2 · π ) ) ) ) |
21 |
19 20
|
syl |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ ( cos ‘ 𝐴 ) = 1 ) → ( 0 < ( 𝐴 / ( 2 · π ) ) ↔ 1 ≤ ( 𝐴 / ( 2 · π ) ) ) ) |
22 |
15 21
|
mpbid |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ ( cos ‘ 𝐴 ) = 1 ) → 1 ≤ ( 𝐴 / ( 2 · π ) ) ) |
23 |
11 22
|
eqbrtrid |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ ( cos ‘ 𝐴 ) = 1 ) → ( ( 2 · π ) / ( 2 · π ) ) ≤ ( 𝐴 / ( 2 · π ) ) ) |
24 |
|
rpre |
⊢ ( 𝐴 ∈ ℝ+ → 𝐴 ∈ ℝ ) |
25 |
24
|
adantr |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ ( cos ‘ 𝐴 ) = 1 ) → 𝐴 ∈ ℝ ) |
26 |
6 9
|
pm3.2i |
⊢ ( ( 2 · π ) ∈ ℝ ∧ 0 < ( 2 · π ) ) |
27 |
|
lediv1 |
⊢ ( ( ( 2 · π ) ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ ( ( 2 · π ) ∈ ℝ ∧ 0 < ( 2 · π ) ) ) → ( ( 2 · π ) ≤ 𝐴 ↔ ( ( 2 · π ) / ( 2 · π ) ) ≤ ( 𝐴 / ( 2 · π ) ) ) ) |
28 |
6 26 27
|
mp3an13 |
⊢ ( 𝐴 ∈ ℝ → ( ( 2 · π ) ≤ 𝐴 ↔ ( ( 2 · π ) / ( 2 · π ) ) ≤ ( 𝐴 / ( 2 · π ) ) ) ) |
29 |
25 28
|
syl |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ ( cos ‘ 𝐴 ) = 1 ) → ( ( 2 · π ) ≤ 𝐴 ↔ ( ( 2 · π ) / ( 2 · π ) ) ≤ ( 𝐴 / ( 2 · π ) ) ) ) |
30 |
23 29
|
mpbird |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ ( cos ‘ 𝐴 ) = 1 ) → ( 2 · π ) ≤ 𝐴 ) |