Step |
Hyp |
Ref |
Expression |
1 |
|
2rp |
|- 2 e. RR+ |
2 |
|
pirp |
|- _pi e. RR+ |
3 |
|
rpmulcl |
|- ( ( 2 e. RR+ /\ _pi e. RR+ ) -> ( 2 x. _pi ) e. RR+ ) |
4 |
1 2 3
|
mp2an |
|- ( 2 x. _pi ) e. RR+ |
5 |
|
rpre |
|- ( ( 2 x. _pi ) e. RR+ -> ( 2 x. _pi ) e. RR ) |
6 |
4 5
|
ax-mp |
|- ( 2 x. _pi ) e. RR |
7 |
6
|
recni |
|- ( 2 x. _pi ) e. CC |
8 |
|
rpgt0 |
|- ( ( 2 x. _pi ) e. RR+ -> 0 < ( 2 x. _pi ) ) |
9 |
4 8
|
ax-mp |
|- 0 < ( 2 x. _pi ) |
10 |
6 9
|
gt0ne0ii |
|- ( 2 x. _pi ) =/= 0 |
11 |
7 10
|
dividi |
|- ( ( 2 x. _pi ) / ( 2 x. _pi ) ) = 1 |
12 |
|
rpdivcl |
|- ( ( A e. RR+ /\ ( 2 x. _pi ) e. RR+ ) -> ( A / ( 2 x. _pi ) ) e. RR+ ) |
13 |
12
|
rpgt0d |
|- ( ( A e. RR+ /\ ( 2 x. _pi ) e. RR+ ) -> 0 < ( A / ( 2 x. _pi ) ) ) |
14 |
4 13
|
mpan2 |
|- ( A e. RR+ -> 0 < ( A / ( 2 x. _pi ) ) ) |
15 |
14
|
adantr |
|- ( ( A e. RR+ /\ ( cos ` A ) = 1 ) -> 0 < ( A / ( 2 x. _pi ) ) ) |
16 |
|
rpcn |
|- ( A e. RR+ -> A e. CC ) |
17 |
|
coseq1 |
|- ( A e. CC -> ( ( cos ` A ) = 1 <-> ( A / ( 2 x. _pi ) ) e. ZZ ) ) |
18 |
16 17
|
syl |
|- ( A e. RR+ -> ( ( cos ` A ) = 1 <-> ( A / ( 2 x. _pi ) ) e. ZZ ) ) |
19 |
18
|
biimpa |
|- ( ( A e. RR+ /\ ( cos ` A ) = 1 ) -> ( A / ( 2 x. _pi ) ) e. ZZ ) |
20 |
|
zgt0ge1 |
|- ( ( A / ( 2 x. _pi ) ) e. ZZ -> ( 0 < ( A / ( 2 x. _pi ) ) <-> 1 <_ ( A / ( 2 x. _pi ) ) ) ) |
21 |
19 20
|
syl |
|- ( ( A e. RR+ /\ ( cos ` A ) = 1 ) -> ( 0 < ( A / ( 2 x. _pi ) ) <-> 1 <_ ( A / ( 2 x. _pi ) ) ) ) |
22 |
15 21
|
mpbid |
|- ( ( A e. RR+ /\ ( cos ` A ) = 1 ) -> 1 <_ ( A / ( 2 x. _pi ) ) ) |
23 |
11 22
|
eqbrtrid |
|- ( ( A e. RR+ /\ ( cos ` A ) = 1 ) -> ( ( 2 x. _pi ) / ( 2 x. _pi ) ) <_ ( A / ( 2 x. _pi ) ) ) |
24 |
|
rpre |
|- ( A e. RR+ -> A e. RR ) |
25 |
24
|
adantr |
|- ( ( A e. RR+ /\ ( cos ` A ) = 1 ) -> A e. RR ) |
26 |
6 9
|
pm3.2i |
|- ( ( 2 x. _pi ) e. RR /\ 0 < ( 2 x. _pi ) ) |
27 |
|
lediv1 |
|- ( ( ( 2 x. _pi ) e. RR /\ A e. RR /\ ( ( 2 x. _pi ) e. RR /\ 0 < ( 2 x. _pi ) ) ) -> ( ( 2 x. _pi ) <_ A <-> ( ( 2 x. _pi ) / ( 2 x. _pi ) ) <_ ( A / ( 2 x. _pi ) ) ) ) |
28 |
6 26 27
|
mp3an13 |
|- ( A e. RR -> ( ( 2 x. _pi ) <_ A <-> ( ( 2 x. _pi ) / ( 2 x. _pi ) ) <_ ( A / ( 2 x. _pi ) ) ) ) |
29 |
25 28
|
syl |
|- ( ( A e. RR+ /\ ( cos ` A ) = 1 ) -> ( ( 2 x. _pi ) <_ A <-> ( ( 2 x. _pi ) / ( 2 x. _pi ) ) <_ ( A / ( 2 x. _pi ) ) ) ) |
30 |
23 29
|
mpbird |
|- ( ( A e. RR+ /\ ( cos ` A ) = 1 ) -> ( 2 x. _pi ) <_ A ) |