| Step |
Hyp |
Ref |
Expression |
| 1 |
|
2cn |
|- 2 e. CC |
| 2 |
|
2ne0 |
|- 2 =/= 0 |
| 3 |
|
divcan2 |
|- ( ( A e. CC /\ 2 e. CC /\ 2 =/= 0 ) -> ( 2 x. ( A / 2 ) ) = A ) |
| 4 |
1 2 3
|
mp3an23 |
|- ( A e. CC -> ( 2 x. ( A / 2 ) ) = A ) |
| 5 |
4
|
fveq2d |
|- ( A e. CC -> ( cos ` ( 2 x. ( A / 2 ) ) ) = ( cos ` A ) ) |
| 6 |
|
halfcl |
|- ( A e. CC -> ( A / 2 ) e. CC ) |
| 7 |
|
cos2tsin |
|- ( ( A / 2 ) e. CC -> ( cos ` ( 2 x. ( A / 2 ) ) ) = ( 1 - ( 2 x. ( ( sin ` ( A / 2 ) ) ^ 2 ) ) ) ) |
| 8 |
6 7
|
syl |
|- ( A e. CC -> ( cos ` ( 2 x. ( A / 2 ) ) ) = ( 1 - ( 2 x. ( ( sin ` ( A / 2 ) ) ^ 2 ) ) ) ) |
| 9 |
5 8
|
eqtr3d |
|- ( A e. CC -> ( cos ` A ) = ( 1 - ( 2 x. ( ( sin ` ( A / 2 ) ) ^ 2 ) ) ) ) |
| 10 |
9
|
eqeq1d |
|- ( A e. CC -> ( ( cos ` A ) = 1 <-> ( 1 - ( 2 x. ( ( sin ` ( A / 2 ) ) ^ 2 ) ) ) = 1 ) ) |
| 11 |
6
|
sincld |
|- ( A e. CC -> ( sin ` ( A / 2 ) ) e. CC ) |
| 12 |
11
|
sqcld |
|- ( A e. CC -> ( ( sin ` ( A / 2 ) ) ^ 2 ) e. CC ) |
| 13 |
|
mulcl |
|- ( ( 2 e. CC /\ ( ( sin ` ( A / 2 ) ) ^ 2 ) e. CC ) -> ( 2 x. ( ( sin ` ( A / 2 ) ) ^ 2 ) ) e. CC ) |
| 14 |
1 12 13
|
sylancr |
|- ( A e. CC -> ( 2 x. ( ( sin ` ( A / 2 ) ) ^ 2 ) ) e. CC ) |
| 15 |
|
ax-1cn |
|- 1 e. CC |
| 16 |
|
subsub23 |
|- ( ( 1 e. CC /\ ( 2 x. ( ( sin ` ( A / 2 ) ) ^ 2 ) ) e. CC /\ 1 e. CC ) -> ( ( 1 - ( 2 x. ( ( sin ` ( A / 2 ) ) ^ 2 ) ) ) = 1 <-> ( 1 - 1 ) = ( 2 x. ( ( sin ` ( A / 2 ) ) ^ 2 ) ) ) ) |
| 17 |
15 15 16
|
mp3an13 |
|- ( ( 2 x. ( ( sin ` ( A / 2 ) ) ^ 2 ) ) e. CC -> ( ( 1 - ( 2 x. ( ( sin ` ( A / 2 ) ) ^ 2 ) ) ) = 1 <-> ( 1 - 1 ) = ( 2 x. ( ( sin ` ( A / 2 ) ) ^ 2 ) ) ) ) |
| 18 |
14 17
|
syl |
|- ( A e. CC -> ( ( 1 - ( 2 x. ( ( sin ` ( A / 2 ) ) ^ 2 ) ) ) = 1 <-> ( 1 - 1 ) = ( 2 x. ( ( sin ` ( A / 2 ) ) ^ 2 ) ) ) ) |
| 19 |
|
eqcom |
|- ( ( 1 - 1 ) = ( 2 x. ( ( sin ` ( A / 2 ) ) ^ 2 ) ) <-> ( 2 x. ( ( sin ` ( A / 2 ) ) ^ 2 ) ) = ( 1 - 1 ) ) |
| 20 |
|
1m1e0 |
|- ( 1 - 1 ) = 0 |
| 21 |
20
|
eqeq2i |
|- ( ( 2 x. ( ( sin ` ( A / 2 ) ) ^ 2 ) ) = ( 1 - 1 ) <-> ( 2 x. ( ( sin ` ( A / 2 ) ) ^ 2 ) ) = 0 ) |
| 22 |
19 21
|
bitri |
|- ( ( 1 - 1 ) = ( 2 x. ( ( sin ` ( A / 2 ) ) ^ 2 ) ) <-> ( 2 x. ( ( sin ` ( A / 2 ) ) ^ 2 ) ) = 0 ) |
| 23 |
18 22
|
bitrdi |
|- ( A e. CC -> ( ( 1 - ( 2 x. ( ( sin ` ( A / 2 ) ) ^ 2 ) ) ) = 1 <-> ( 2 x. ( ( sin ` ( A / 2 ) ) ^ 2 ) ) = 0 ) ) |
| 24 |
10 23
|
bitrd |
|- ( A e. CC -> ( ( cos ` A ) = 1 <-> ( 2 x. ( ( sin ` ( A / 2 ) ) ^ 2 ) ) = 0 ) ) |
| 25 |
|
mul0or |
|- ( ( 2 e. CC /\ ( ( sin ` ( A / 2 ) ) ^ 2 ) e. CC ) -> ( ( 2 x. ( ( sin ` ( A / 2 ) ) ^ 2 ) ) = 0 <-> ( 2 = 0 \/ ( ( sin ` ( A / 2 ) ) ^ 2 ) = 0 ) ) ) |
| 26 |
1 12 25
|
sylancr |
|- ( A e. CC -> ( ( 2 x. ( ( sin ` ( A / 2 ) ) ^ 2 ) ) = 0 <-> ( 2 = 0 \/ ( ( sin ` ( A / 2 ) ) ^ 2 ) = 0 ) ) ) |
| 27 |
2
|
neii |
|- -. 2 = 0 |
| 28 |
|
biorf |
|- ( -. 2 = 0 -> ( ( ( sin ` ( A / 2 ) ) ^ 2 ) = 0 <-> ( 2 = 0 \/ ( ( sin ` ( A / 2 ) ) ^ 2 ) = 0 ) ) ) |
| 29 |
27 28
|
ax-mp |
|- ( ( ( sin ` ( A / 2 ) ) ^ 2 ) = 0 <-> ( 2 = 0 \/ ( ( sin ` ( A / 2 ) ) ^ 2 ) = 0 ) ) |
| 30 |
26 29
|
bitr4di |
|- ( A e. CC -> ( ( 2 x. ( ( sin ` ( A / 2 ) ) ^ 2 ) ) = 0 <-> ( ( sin ` ( A / 2 ) ) ^ 2 ) = 0 ) ) |
| 31 |
|
sqeq0 |
|- ( ( sin ` ( A / 2 ) ) e. CC -> ( ( ( sin ` ( A / 2 ) ) ^ 2 ) = 0 <-> ( sin ` ( A / 2 ) ) = 0 ) ) |
| 32 |
11 31
|
syl |
|- ( A e. CC -> ( ( ( sin ` ( A / 2 ) ) ^ 2 ) = 0 <-> ( sin ` ( A / 2 ) ) = 0 ) ) |
| 33 |
24 30 32
|
3bitrd |
|- ( A e. CC -> ( ( cos ` A ) = 1 <-> ( sin ` ( A / 2 ) ) = 0 ) ) |
| 34 |
|
sineq0 |
|- ( ( A / 2 ) e. CC -> ( ( sin ` ( A / 2 ) ) = 0 <-> ( ( A / 2 ) / _pi ) e. ZZ ) ) |
| 35 |
6 34
|
syl |
|- ( A e. CC -> ( ( sin ` ( A / 2 ) ) = 0 <-> ( ( A / 2 ) / _pi ) e. ZZ ) ) |
| 36 |
1 2
|
pm3.2i |
|- ( 2 e. CC /\ 2 =/= 0 ) |
| 37 |
|
picn |
|- _pi e. CC |
| 38 |
|
pire |
|- _pi e. RR |
| 39 |
|
pipos |
|- 0 < _pi |
| 40 |
38 39
|
gt0ne0ii |
|- _pi =/= 0 |
| 41 |
37 40
|
pm3.2i |
|- ( _pi e. CC /\ _pi =/= 0 ) |
| 42 |
|
divdiv1 |
|- ( ( A e. CC /\ ( 2 e. CC /\ 2 =/= 0 ) /\ ( _pi e. CC /\ _pi =/= 0 ) ) -> ( ( A / 2 ) / _pi ) = ( A / ( 2 x. _pi ) ) ) |
| 43 |
36 41 42
|
mp3an23 |
|- ( A e. CC -> ( ( A / 2 ) / _pi ) = ( A / ( 2 x. _pi ) ) ) |
| 44 |
43
|
eleq1d |
|- ( A e. CC -> ( ( ( A / 2 ) / _pi ) e. ZZ <-> ( A / ( 2 x. _pi ) ) e. ZZ ) ) |
| 45 |
33 35 44
|
3bitrd |
|- ( A e. CC -> ( ( cos ` A ) = 1 <-> ( A / ( 2 x. _pi ) ) e. ZZ ) ) |