Step |
Hyp |
Ref |
Expression |
1 |
|
taupilem2 |
|- _tau <_ ( 2 x. _pi ) |
2 |
|
inss1 |
|- ( RR+ i^i ( `' cos " { 1 } ) ) C_ RR+ |
3 |
|
rpssre |
|- RR+ C_ RR |
4 |
2 3
|
sstri |
|- ( RR+ i^i ( `' cos " { 1 } ) ) C_ RR |
5 |
|
2rp |
|- 2 e. RR+ |
6 |
|
pirp |
|- _pi e. RR+ |
7 |
|
rpmulcl |
|- ( ( 2 e. RR+ /\ _pi e. RR+ ) -> ( 2 x. _pi ) e. RR+ ) |
8 |
5 6 7
|
mp2an |
|- ( 2 x. _pi ) e. RR+ |
9 |
|
cos2pi |
|- ( cos ` ( 2 x. _pi ) ) = 1 |
10 |
|
taupilem3 |
|- ( ( 2 x. _pi ) e. ( RR+ i^i ( `' cos " { 1 } ) ) <-> ( ( 2 x. _pi ) e. RR+ /\ ( cos ` ( 2 x. _pi ) ) = 1 ) ) |
11 |
8 9 10
|
mpbir2an |
|- ( 2 x. _pi ) e. ( RR+ i^i ( `' cos " { 1 } ) ) |
12 |
11
|
ne0ii |
|- ( RR+ i^i ( `' cos " { 1 } ) ) =/= (/) |
13 |
|
taupilemrplb |
|- E. x e. RR A. y e. ( RR+ i^i ( `' cos " { 1 } ) ) x <_ y |
14 |
4 12 13
|
3pm3.2i |
|- ( ( RR+ i^i ( `' cos " { 1 } ) ) C_ RR /\ ( RR+ i^i ( `' cos " { 1 } ) ) =/= (/) /\ E. x e. RR A. y e. ( RR+ i^i ( `' cos " { 1 } ) ) x <_ y ) |
15 |
|
2re |
|- 2 e. RR |
16 |
|
pire |
|- _pi e. RR |
17 |
15 16
|
remulcli |
|- ( 2 x. _pi ) e. RR |
18 |
|
infregelb |
|- ( ( ( ( RR+ i^i ( `' cos " { 1 } ) ) C_ RR /\ ( RR+ i^i ( `' cos " { 1 } ) ) =/= (/) /\ E. x e. RR A. y e. ( RR+ i^i ( `' cos " { 1 } ) ) x <_ y ) /\ ( 2 x. _pi ) e. RR ) -> ( ( 2 x. _pi ) <_ inf ( ( RR+ i^i ( `' cos " { 1 } ) ) , RR , < ) <-> A. x e. ( RR+ i^i ( `' cos " { 1 } ) ) ( 2 x. _pi ) <_ x ) ) |
19 |
14 17 18
|
mp2an |
|- ( ( 2 x. _pi ) <_ inf ( ( RR+ i^i ( `' cos " { 1 } ) ) , RR , < ) <-> A. x e. ( RR+ i^i ( `' cos " { 1 } ) ) ( 2 x. _pi ) <_ x ) |
20 |
|
taupilem3 |
|- ( x e. ( RR+ i^i ( `' cos " { 1 } ) ) <-> ( x e. RR+ /\ ( cos ` x ) = 1 ) ) |
21 |
|
taupilem1 |
|- ( ( x e. RR+ /\ ( cos ` x ) = 1 ) -> ( 2 x. _pi ) <_ x ) |
22 |
20 21
|
sylbi |
|- ( x e. ( RR+ i^i ( `' cos " { 1 } ) ) -> ( 2 x. _pi ) <_ x ) |
23 |
19 22
|
mprgbir |
|- ( 2 x. _pi ) <_ inf ( ( RR+ i^i ( `' cos " { 1 } ) ) , RR , < ) |
24 |
|
df-tau |
|- _tau = inf ( ( RR+ i^i ( `' cos " { 1 } ) ) , RR , < ) |
25 |
23 24
|
breqtrri |
|- ( 2 x. _pi ) <_ _tau |
26 |
|
infrecl |
|- ( ( ( RR+ i^i ( `' cos " { 1 } ) ) C_ RR /\ ( RR+ i^i ( `' cos " { 1 } ) ) =/= (/) /\ E. x e. RR A. y e. ( RR+ i^i ( `' cos " { 1 } ) ) x <_ y ) -> inf ( ( RR+ i^i ( `' cos " { 1 } ) ) , RR , < ) e. RR ) |
27 |
14 26
|
ax-mp |
|- inf ( ( RR+ i^i ( `' cos " { 1 } ) ) , RR , < ) e. RR |
28 |
24 27
|
eqeltri |
|- _tau e. RR |
29 |
28 17
|
letri3i |
|- ( _tau = ( 2 x. _pi ) <-> ( _tau <_ ( 2 x. _pi ) /\ ( 2 x. _pi ) <_ _tau ) ) |
30 |
1 25 29
|
mpbir2an |
|- _tau = ( 2 x. _pi ) |