Metamath Proof Explorer


Theorem taupilemrplb

Description: A set of positive reals has (in the reals) a lower bound. (Contributed by Jim Kingdon, 19-Feb-2019)

Ref Expression
Assertion taupilemrplb
|- E. x e. RR A. y e. ( RR+ i^i A ) x <_ y

Proof

Step Hyp Ref Expression
1 0re
 |-  0 e. RR
2 inss1
 |-  ( RR+ i^i A ) C_ RR+
3 2 sseli
 |-  ( y e. ( RR+ i^i A ) -> y e. RR+ )
4 3 rpge0d
 |-  ( y e. ( RR+ i^i A ) -> 0 <_ y )
5 4 rgen
 |-  A. y e. ( RR+ i^i A ) 0 <_ y
6 breq1
 |-  ( x = 0 -> ( x <_ y <-> 0 <_ y ) )
7 6 ralbidv
 |-  ( x = 0 -> ( A. y e. ( RR+ i^i A ) x <_ y <-> A. y e. ( RR+ i^i A ) 0 <_ y ) )
8 7 rspcev
 |-  ( ( 0 e. RR /\ A. y e. ( RR+ i^i A ) 0 <_ y ) -> E. x e. RR A. y e. ( RR+ i^i A ) x <_ y )
9 1 5 8 mp2an
 |-  E. x e. RR A. y e. ( RR+ i^i A ) x <_ y