Metamath Proof Explorer


Theorem taupilemrplb

Description: A set of positive reals has (in the reals) a lower bound. (Contributed by Jim Kingdon, 19-Feb-2019)

Ref Expression
Assertion taupilemrplb x y + A x y

Proof

Step Hyp Ref Expression
1 0re 0
2 inss1 + A +
3 2 sseli y + A y +
4 3 rpge0d y + A 0 y
5 4 rgen y + A 0 y
6 breq1 x = 0 x y 0 y
7 6 ralbidv x = 0 y + A x y y + A 0 y
8 7 rspcev 0 y + A 0 y x y + A x y
9 1 5 8 mp2an x y + A x y