Metamath Proof Explorer


Theorem taupilemrplb

Description: A set of positive reals has (in the reals) a lower bound. (Contributed by Jim Kingdon, 19-Feb-2019)

Ref Expression
Assertion taupilemrplb 𝑥 ∈ ℝ ∀ 𝑦 ∈ ( ℝ+𝐴 ) 𝑥𝑦

Proof

Step Hyp Ref Expression
1 0re 0 ∈ ℝ
2 inss1 ( ℝ+𝐴 ) ⊆ ℝ+
3 2 sseli ( 𝑦 ∈ ( ℝ+𝐴 ) → 𝑦 ∈ ℝ+ )
4 3 rpge0d ( 𝑦 ∈ ( ℝ+𝐴 ) → 0 ≤ 𝑦 )
5 4 rgen 𝑦 ∈ ( ℝ+𝐴 ) 0 ≤ 𝑦
6 breq1 ( 𝑥 = 0 → ( 𝑥𝑦 ↔ 0 ≤ 𝑦 ) )
7 6 ralbidv ( 𝑥 = 0 → ( ∀ 𝑦 ∈ ( ℝ+𝐴 ) 𝑥𝑦 ↔ ∀ 𝑦 ∈ ( ℝ+𝐴 ) 0 ≤ 𝑦 ) )
8 7 rspcev ( ( 0 ∈ ℝ ∧ ∀ 𝑦 ∈ ( ℝ+𝐴 ) 0 ≤ 𝑦 ) → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ( ℝ+𝐴 ) 𝑥𝑦 )
9 1 5 8 mp2an 𝑥 ∈ ℝ ∀ 𝑦 ∈ ( ℝ+𝐴 ) 𝑥𝑦