Description: A set of positive reals has (in the reals) a lower bound. (Contributed by Jim Kingdon, 19-Feb-2019)
Ref | Expression | ||
---|---|---|---|
Assertion | taupilemrplb | ⊢ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ( ℝ+ ∩ 𝐴 ) 𝑥 ≤ 𝑦 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0re | ⊢ 0 ∈ ℝ | |
2 | inss1 | ⊢ ( ℝ+ ∩ 𝐴 ) ⊆ ℝ+ | |
3 | 2 | sseli | ⊢ ( 𝑦 ∈ ( ℝ+ ∩ 𝐴 ) → 𝑦 ∈ ℝ+ ) |
4 | 3 | rpge0d | ⊢ ( 𝑦 ∈ ( ℝ+ ∩ 𝐴 ) → 0 ≤ 𝑦 ) |
5 | 4 | rgen | ⊢ ∀ 𝑦 ∈ ( ℝ+ ∩ 𝐴 ) 0 ≤ 𝑦 |
6 | breq1 | ⊢ ( 𝑥 = 0 → ( 𝑥 ≤ 𝑦 ↔ 0 ≤ 𝑦 ) ) | |
7 | 6 | ralbidv | ⊢ ( 𝑥 = 0 → ( ∀ 𝑦 ∈ ( ℝ+ ∩ 𝐴 ) 𝑥 ≤ 𝑦 ↔ ∀ 𝑦 ∈ ( ℝ+ ∩ 𝐴 ) 0 ≤ 𝑦 ) ) |
8 | 7 | rspcev | ⊢ ( ( 0 ∈ ℝ ∧ ∀ 𝑦 ∈ ( ℝ+ ∩ 𝐴 ) 0 ≤ 𝑦 ) → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ( ℝ+ ∩ 𝐴 ) 𝑥 ≤ 𝑦 ) |
9 | 1 5 8 | mp2an | ⊢ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ( ℝ+ ∩ 𝐴 ) 𝑥 ≤ 𝑦 |