Metamath Proof Explorer


Theorem taupilem3

Description: Lemma for tau-related theorems. (Contributed by Jim Kingdon, 16-Feb-2019)

Ref Expression
Assertion taupilem3
|- ( A e. ( RR+ i^i ( `' cos " { 1 } ) ) <-> ( A e. RR+ /\ ( cos ` A ) = 1 ) )

Proof

Step Hyp Ref Expression
1 elin
 |-  ( A e. ( RR+ i^i ( `' cos " { 1 } ) ) <-> ( A e. RR+ /\ A e. ( `' cos " { 1 } ) ) )
2 cosf
 |-  cos : CC --> CC
3 ffn
 |-  ( cos : CC --> CC -> cos Fn CC )
4 fniniseg
 |-  ( cos Fn CC -> ( A e. ( `' cos " { 1 } ) <-> ( A e. CC /\ ( cos ` A ) = 1 ) ) )
5 2 3 4 mp2b
 |-  ( A e. ( `' cos " { 1 } ) <-> ( A e. CC /\ ( cos ` A ) = 1 ) )
6 rpcn
 |-  ( A e. RR+ -> A e. CC )
7 6 biantrurd
 |-  ( A e. RR+ -> ( ( cos ` A ) = 1 <-> ( A e. CC /\ ( cos ` A ) = 1 ) ) )
8 5 7 bitr4id
 |-  ( A e. RR+ -> ( A e. ( `' cos " { 1 } ) <-> ( cos ` A ) = 1 ) )
9 8 pm5.32i
 |-  ( ( A e. RR+ /\ A e. ( `' cos " { 1 } ) ) <-> ( A e. RR+ /\ ( cos ` A ) = 1 ) )
10 1 9 bitri
 |-  ( A e. ( RR+ i^i ( `' cos " { 1 } ) ) <-> ( A e. RR+ /\ ( cos ` A ) = 1 ) )