Step |
Hyp |
Ref |
Expression |
1 |
|
elin |
⊢ ( 𝐴 ∈ ( ℝ+ ∩ ( ◡ cos “ { 1 } ) ) ↔ ( 𝐴 ∈ ℝ+ ∧ 𝐴 ∈ ( ◡ cos “ { 1 } ) ) ) |
2 |
|
cosf |
⊢ cos : ℂ ⟶ ℂ |
3 |
|
ffn |
⊢ ( cos : ℂ ⟶ ℂ → cos Fn ℂ ) |
4 |
|
fniniseg |
⊢ ( cos Fn ℂ → ( 𝐴 ∈ ( ◡ cos “ { 1 } ) ↔ ( 𝐴 ∈ ℂ ∧ ( cos ‘ 𝐴 ) = 1 ) ) ) |
5 |
2 3 4
|
mp2b |
⊢ ( 𝐴 ∈ ( ◡ cos “ { 1 } ) ↔ ( 𝐴 ∈ ℂ ∧ ( cos ‘ 𝐴 ) = 1 ) ) |
6 |
|
rpcn |
⊢ ( 𝐴 ∈ ℝ+ → 𝐴 ∈ ℂ ) |
7 |
6
|
biantrurd |
⊢ ( 𝐴 ∈ ℝ+ → ( ( cos ‘ 𝐴 ) = 1 ↔ ( 𝐴 ∈ ℂ ∧ ( cos ‘ 𝐴 ) = 1 ) ) ) |
8 |
5 7
|
bitr4id |
⊢ ( 𝐴 ∈ ℝ+ → ( 𝐴 ∈ ( ◡ cos “ { 1 } ) ↔ ( cos ‘ 𝐴 ) = 1 ) ) |
9 |
8
|
pm5.32i |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐴 ∈ ( ◡ cos “ { 1 } ) ) ↔ ( 𝐴 ∈ ℝ+ ∧ ( cos ‘ 𝐴 ) = 1 ) ) |
10 |
1 9
|
bitri |
⊢ ( 𝐴 ∈ ( ℝ+ ∩ ( ◡ cos “ { 1 } ) ) ↔ ( 𝐴 ∈ ℝ+ ∧ ( cos ‘ 𝐴 ) = 1 ) ) |