Metamath Proof Explorer


Theorem taupilem3

Description: Lemma for tau-related theorems. (Contributed by Jim Kingdon, 16-Feb-2019)

Ref Expression
Assertion taupilem3 ( 𝐴 ∈ ( ℝ+ ∩ ( cos “ { 1 } ) ) ↔ ( 𝐴 ∈ ℝ+ ∧ ( cos ‘ 𝐴 ) = 1 ) )

Proof

Step Hyp Ref Expression
1 elin ( 𝐴 ∈ ( ℝ+ ∩ ( cos “ { 1 } ) ) ↔ ( 𝐴 ∈ ℝ+𝐴 ∈ ( cos “ { 1 } ) ) )
2 cosf cos : ℂ ⟶ ℂ
3 ffn ( cos : ℂ ⟶ ℂ → cos Fn ℂ )
4 fniniseg ( cos Fn ℂ → ( 𝐴 ∈ ( cos “ { 1 } ) ↔ ( 𝐴 ∈ ℂ ∧ ( cos ‘ 𝐴 ) = 1 ) ) )
5 2 3 4 mp2b ( 𝐴 ∈ ( cos “ { 1 } ) ↔ ( 𝐴 ∈ ℂ ∧ ( cos ‘ 𝐴 ) = 1 ) )
6 rpcn ( 𝐴 ∈ ℝ+𝐴 ∈ ℂ )
7 6 biantrurd ( 𝐴 ∈ ℝ+ → ( ( cos ‘ 𝐴 ) = 1 ↔ ( 𝐴 ∈ ℂ ∧ ( cos ‘ 𝐴 ) = 1 ) ) )
8 5 7 bitr4id ( 𝐴 ∈ ℝ+ → ( 𝐴 ∈ ( cos “ { 1 } ) ↔ ( cos ‘ 𝐴 ) = 1 ) )
9 8 pm5.32i ( ( 𝐴 ∈ ℝ+𝐴 ∈ ( cos “ { 1 } ) ) ↔ ( 𝐴 ∈ ℝ+ ∧ ( cos ‘ 𝐴 ) = 1 ) )
10 1 9 bitri ( 𝐴 ∈ ( ℝ+ ∩ ( cos “ { 1 } ) ) ↔ ( 𝐴 ∈ ℝ+ ∧ ( cos ‘ 𝐴 ) = 1 ) )